首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic adenosine 3', 5'-monophosphate (cAMP) is a ubiquitous mediator of intracellular signalling events. It acts principally through stimulation of cAMP-dependent protein kinases (PKAs) but also activates certain ion channels and guanine nucleotide exchange factors (Epacs). Metabolism of cAMP is catalysed by phosphodiesterases (PDEs). Here we identify a cAMP-responsive signalling complex maintained by the muscle-specific A-kinase anchoring protein (mAKAP) that includes PKA, PDE4D3 and Epac1. These intermolecular interactions facilitate the dissemination of distinct cAMP signals through each effector protein. Anchored PKA stimulates PDE4D3 to reduce local cAMP concentrations, whereas an mAKAP-associated ERK5 kinase module suppresses PDE4D3. PDE4D3 also functions as an adaptor protein that recruits Epac1, an exchange factor for the small GTPase Rap1, to enable cAMP-dependent attenuation of ERK5. Pharmacological and molecular manipulations of the mAKAP complex show that anchored ERK5 can induce cardiomyocyte hypertrophy. Thus, two coupled cAMP-dependent feedback loops are coordinated within the context of the mAKAP complex, suggesting that local control of cAMP signalling by AKAP proteins is more intricate than previously appreciated.  相似文献   

2.
Zhang J  Hupfeld CJ  Taylor SS  Olefsky JM  Tsien RY 《Nature》2005,437(7058):569-573
Hormones mobilize intracellular second messengers and initiate signalling cascades involving protein kinases and phosphatases, which are often spatially compartmentalized by anchoring proteins to increase signalling specificity. These scaffold proteins may themselves be modulated by hormones. In adipocytes, stimulation of beta-adrenergic receptors increases cyclic AMP levels and activates protein kinase A (PKA), which stimulates lipolysis by phosphorylating hormone-sensitive lipase and perilipin. Acute insulin treatment activates phosphodiesterase 3B, reduces cAMP levels and quenches beta-adrenergic receptor signalling. In contrast, chronic hyperinsulinaemic conditions (typical of type 2 diabetes) enhance beta-adrenergic receptor-mediated cAMP production. This amplification of cAMP signalling is paradoxical because it should enhance lipolysis, the opposite of the known short-term effect of hyperinsulinaemia. Here we show that in adipocytes, chronically high insulin levels inhibit beta-adrenergic receptors (but not other cAMP-elevating stimuli) from activating PKA. We measured this using an improved fluorescent reporter and by phosphorylation of endogenous cAMP-response-element binding protein (CREB). Disruption of PKA scaffolding mimics the interference of insulin with beta-adrenergic receptor signalling. Chronically high insulin levels may disrupt the close apposition of beta-adrenergic receptors and PKA, identifying a new mechanism for crosstalk between heterologous signal transduction pathways.  相似文献   

3.
4.
A Bahinski  A C Nairn  P Greengard  D C Gadsby 《Nature》1989,340(6236):718-721
In heart cells, cyclic AMP-dependent protein kinase (PKA) regulates calcium- and potassium-ion current by phosphorylating the ion channels or closely associated regulatory proteins. We report here that isoprenaline induced large chloride-ion currents in voltage-clamped, internally-dialysed myocytes from guinea-pig ventricles. The Cl- current could be activated by intracellular dialysis with cAMP or the catalytic subunit of PKA, indicating regulation by phosphorylation. In approximately symmetrical solutions of high Cl- concentration, the macroscopic cardiac Cl- current showed little rectification, unlike the single-channel current in PKA-regulated Cl- channels of airway epithelial cells. But, like epithelial Cl- -channel currents, the cardiac Cl- current was sensitive to the distilbene,4,4'-dinitrostilbene-2,2'-disulphonic acid (DNDS). In the absence of kinase activation, cardiac sarcolemmal Cl- conductance was negligible. During beta-adrenergic stimulation of the heart, this novel Cl- conductance should accelerate action-potential repolarization and so protect impulse propagation in the face of the possibly arrhythmogenic increases in heart rate and in calcium entry into the cells.  相似文献   

5.
利用海藻来源的黄曲霉中提取到的次级代谢产物筛选GPR41的激动剂,发现环二肽类化合物环(L-脯-L-苯丙)二肽(17号)可在多种(G41-CHO,G12-CHO,Mock-CHO,SH-sy5y和HEK293)细胞中引起细胞内cAMP水平升高.实验结果表明,17号化合物引起cAMP升高不依赖于GPCR的激活,且腺苷酸环化酶激活剂forskolin与17号化合物共处理组比fsk单独处理组cAMP进一步增加.实验结果提示,17号化合物可能是通过抑制cAMP水解,从而引起cAMP水平的持续升高.17号化合物与已知的PDE抑制剂具有相似的结构特征,可能是潜在的磷酸二酯酶抑制剂.这是首次发现环(L-脯-L-苯丙)二肽具有在多种细胞内提高cAMP浓度的作用.  相似文献   

6.
7.
Hong ST  Bang S  Hyun S  Kang J  Jeong K  Paik D  Chung J  Kim J 《Nature》2008,454(7205):771-775
Homoiotherms, for example mammals, regulate their body temperature with physiological responses such as a change of metabolic rate and sweating. In contrast, the body temperature of poikilotherms, for example Drosophila, is the result of heat exchange with the surrounding environment as a result of the large ratio of surface area to volume of their bodies. Accordingly, these animals must instinctively move to places with an environmental temperature as close as possible to their genetically determined desired temperature. The temperature that Drosophila instinctively prefers has a function equivalent to the 'set point' temperature in mammals. Although various temperature-gated TRP channels have been discovered, molecular and cellular components in Drosophila brain responsible for determining the desired temperature remain unknown. We identified these components by performing a large-scale genetic screen of temperature preference behaviour (TPB) in Drosophila. In parallel, we mapped areas of the Drosophila brain controlling TPB by targeted inactivation of neurons with tetanus toxin and a potassium channel (Kir2.1) driven with various brain-specific GAL4s. Here we show that mushroom bodies (MBs) and the cyclic AMP-cAMP-dependent protein kinase A (cAMP-PKA) pathway are essential for controlling TPB. Furthermore, targeted expression of cAMP-PKA pathway components in only the MB was sufficient to rescue abnormal TPB of the corresponding mutants. Preferred temperatures were affected by the level of cAMP and PKA activity in the MBs in various PKA pathway mutants.  相似文献   

8.
Muscarinic acetylcholine receptors (mAChRs), like many other neurotransmitter and hormone receptors, transduce agonist signals by activating G proteins to regulate ion channel activity and the generation of second messengers via the phosphoinositide (PI) and adenylyl cyclase systems. Human mAChRs are a family of at least four gene products which have distinct primary structures, ligand-binding properties and patterns of tissue-specific expression. To examine the question of whether functional differences exist between multiple receptor subtypes, we have investigated the ability of each subtype to regulate PI hydrolysis and adenylyl cyclase when expressed individually in a cell lacking endogenous mAChRs. We show that the HM2 and HM3 mAChRs efficiently inhibit adenylyl cyclase activity but poorly activate PI hydrolysis. In contrast, the HM1 and HM4 mAChRs strongly activate PI hydrolysis, but do not inhibit adenylyl cyclase, and in fact can substantially elevate cAMP levels. Interestingly, the subtypes that we find to be functionally similar are also more similar in sequence. Our results indicate that the different receptor subtypes are functionally specialized.  相似文献   

9.
Jia J  Tong C  Wang B  Luo L  Jiang J 《Nature》2004,432(7020):1045-1050
The Hedgehog (Hh) family of secreted proteins governs cell growth and patterning in animal development. The Hh signal is transduced by the seven-transmembrane protein Smoothened (Smo); however, the mechanism by which Smo is regulated remains largely unknown. Here we show that protein kinase A (PKA) and casein kinase I (CKI) regulate Smo cell-surface accumulation and activity in response to Hh. Blocking PKA or CKI activity in the Drosophila wing disc prevents Hh-induced Smo accumulation and attenuates pathway activity, whereas increasing PKA activity promotes Smo accumulation and pathway activation. We show that PKA and CKI phosphorylate Smo at several sites, and that phosphorylation-deficient forms of Smo fail to accumulate on the cell surface and are unable to transduce the Hh signal. Conversely, phosphorylation-mimicking Smo variants show constitutive cell-surface expression and signalling activity. Furthermore, we find that the levels of Smo cell-surface expression and activity correlate with its levels of phosphorylation. Our data indicate that Hh induces progressive Smo phosphorylation by PKA and CKI, leading to elevation of Smo cell-surface levels and signalling activity.  相似文献   

10.
Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons   总被引:32,自引:0,他引:32  
The physiological state of the cell is controlled by signal transduction mechanisms which regulate the balance between protein kinase and protein phosphatase activities. Here we report that a single protein can, depending on which particular amino-acid residue is phosphorylated, function either as a kinase or phosphatase inhibitor. DARPP-32 (dopamine and cyclic AMP-regulated phospho-protein, relative molecular mass 32,000) is converted into an inhibitor of protein phosphatase 1 when it is phosphorylated by protein kinase A (PKA) at threonine 34. We find that DARPP-32 is converted into an inhibitor of PKA when phosphorylated at threonine 75 by cyclin-dependent kinase 5 (Cdk5). Cdk5 phosphorylates DARPP-32 in vitro and in intact brain cells. Phospho-Thr 75 DARPP-32 inhibits PKA in vitro by a competitive mechanism. Decreasing phospho-Thr 75 DARPP-32 in striatal slices, either by a Cdk5-specific inhibitor or by using genetically altered mice, results in increased dopamine-induced phosphorylation of PKA substrates and augmented peak voltage-gated calcium currents. Thus DARPP-32 is a bifunctional signal transduction molecule which, by distinct mechanisms, controls a serine/threonine kinase and a serine/threonine phosphatase.  相似文献   

11.
磷酸二酯酶(Pde)在植物病原菌G蛋白信号传导途径上发挥着重要作用。Pde已在粟酒裂殖酵母菌、稻瘟病菌等中有相关报道,然而,对于侵染十字花科植物的希金斯炭疽菌中Pde研究尚不深入。基于酿酒酵母中已经报道的典型Pde序列,利用Blastp以及关键词对炭疽菌蛋白质数据库进行比对、搜索,并通过SMART保守结构域分析。同时,通过对该菌中典型Pde氨基酸序列进行理化性质、疏水性、细胞信号肽、跨膜区结构、亚细胞定位以及二级结构等生物信息学分析,此外,通过对希金斯炭疽菌中的典型Pde与其他物种中的同源序列进行遗传关系比较分析。通过上述生物信息学分析,以期为深入开展Pde定位、功能研究等方面研究,同时,为进一步实现以控制病原菌G蛋白信号途径功能新的药物靶标的开发提供有力的理论支撑。  相似文献   

12.
Lee HK  Barbarosie M  Kameyama K  Bear MF  Huganir RL 《Nature》2000,405(6789):955-959
Bidirectional changes in the efficacy of neuronal synaptic transmission, such as hippocampal long-term potentiation (LTP) and long-term depression (LTD), are thought to be mechanisms for information storage in the brain. LTP and LTD may be mediated by the modulation of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazloe proprionic acid) receptor phosphorylation. Here we show that LTP and LTD reversibly modify the phosphorylation of the AMPA receptor GluR1 subunit. However, contrary to the hypothesis that LTP and LTD are the functional inverse of each other, we find that they are associated with phosphorylation and dephosphorylation, respectively, of distinct GluR1 phosphorylation sites. Moreover, the site modulated depends on the stimulation history of the synapse. LTD induction in naive synapses dephosphorylates the major cyclic-AMP-dependent protein kinase (PKA) site, whereas in potentiated synapses the major calcium/calmodulin-dependent protein kinase II (CaMKII) site is dephosphorylated. Conversely, LTP induction in naive synapses and depressed synapses increases phosphorylation of the CaMKII site and the PKA site, respectively. LTP is differentially sensitive to CaMKII and PKA inhibitors depending on the history of the synapse. These results indicate that AMPA receptor phosphorylation is critical for synaptic plasticity, and that identical stimulation conditions recruit different signal-transduction pathways depending on synaptic history.  相似文献   

13.
Slep KC  Kercher MA  He W  Cowan CW  Wensel TG  Sigler PB 《Nature》2001,409(6823):1071-1077
A multitude of heptahelical receptors use heterotrimeric G proteins to transduce signals to specific effector target molecules. The G protein transducin, Gt, couples photon-activated rhodopsin with the effector cyclic GMP phosophodiesterase (PDE) in the vertebrate phototransduction cascade. The interactions of the Gt alpha-subunit (alpha(t)) with the inhibitory PDE gamma-subunit (PDEgamma) are central to effector activation, and also enhance visual recovery in cooperation with the GTPase-activating protein regulator of G-protein signalling (RGS)-9 (refs 1-3). Here we describe the crystal structure at 2.0 A of rod transducin alpha x GDP x AlF4- in complex with the effector molecule PDEgamma and the GTPase-activating protein RGS9. In addition, we present the independently solved crystal structures of the RGS9 RGS domain both alone and in complex with alpha(t/i1) x GDP x AlF4-. These structures reveal insights into effector activation, synergistic GTPase acceleration, RGS9 specificity and RGS activity. Effector binding to a nucleotide-dependent site on alpha(t) sequesters PDEgamma residues implicated in PDE inhibition, and potentiates recruitment of RGS9 for hydrolytic transition state stabilization and concomitant signal termination.  相似文献   

14.
The heterotrimeric G-protein Gs couples cell-surface receptors to the activation of adenylyl cyclases and cyclic AMP production (reviewed in refs 1, 2). RGS proteins, which act as GTPase-activating proteins (GAPs) for the G-protein alpha-subunits alpha(i) and alpha(q), lack such activity for alpha(s) (refs 3-6). But several RGS proteins inhibit cAMP production by Gs-linked receptors. Here we report that RGS2 reduces cAMP production by odorant-stimulated olfactory epithelium membranes, in which the alpha(s) family member alpha(olf) links odorant receptors to adenylyl cyclase activation. Unexpectedly, RGS2 reduces odorant-elicited cAMP production, not by acting on alpha(olf) but by inhibiting the activity of adenylyl cyclase type III, the predominant adenylyl cyclase isoform in olfactory neurons. Furthermore, whole-cell voltage clamp recordings of odorant-stimulated olfactory neurons indicate that endogenous RGS2 negatively regulates odorant-evoked intracellular signalling. These results reveal a mechanism for controlling the activities of adenylyl cyclases, which probably contributes to the ability of olfactory neurons to discriminate odours.  相似文献   

15.
NO-cGMP pathway in penile corpus cavernosal smooth muscle plays an important role in penile erection. The level of cGMP is regulated by a balance between the rate of synthesis by guanylate cyclase and the rate of hydrolytic breakdown to guanosine 5′ monophosphate (GMP) by phosphodiesterase 5(PDE5). Icariin is isolated from natural drug Epimedii herba, it is shown to have the relaxation effect on corpus cavernosal smooth muscle of rabbit (IC50: 4×10−4 mol/L), and the mechanism of the relaxation effect of Icariin on corpus cavernosum believed to have the inhibiting effect on PDE5 and activation of NO-cGMP pathway to enhancing penile erection.  相似文献   

16.
Epac proteins are activated by binding of the second messenger cAMP and then act as guanine nucleotide exchange factors for Rap proteins. The Epac proteins are involved in the regulation of cell adhesion and insulin secretion. Here we have determined the structure of Epac2 in complex with a cAMP analogue (Sp-cAMPS) and RAP1B by X-ray crystallography and single particle electron microscopy. The structure represents the cAMP activated state of the Epac2 protein with the RAP1B protein trapped in the course of the exchange reaction. Comparison with the inactive conformation reveals that cAMP binding causes conformational changes that allow the cyclic nucleotide binding domain to swing from a position blocking the Rap binding site towards a docking site at the Ras exchange motif domain.  相似文献   

17.
利用支持向量机(SVM)技术构建Par-4关联的蛋白质相互作用网络,预测出与Par-4有相互作用的蛋白质82个;这些蛋白质按照功能划分为8大类,主要包括:蛋白激酶、泛素化蛋白酶、死亡受体相关因子、与细胞周期或DNA复制相关蛋白质、调节蛋白质、与疾病相关蛋白质、具有特定结构域结合蛋白质和其他蛋白质等。结合文献挖掘和数据库检索信息,推断出了Par-4的2条可能新的信号转导途径。首次预测到Par-4与一大类泛素化蛋白有密切的关系。研究发现,Par-4与多种蛋白质具有复杂的相互作用,并且,在多个细胞凋亡途径中扮演了重要角色。  相似文献   

18.
19.
20.
cAMP 反应元件结合蛋白(cAMP response element-binding proteins,CREB)是一个哺乳动物转录因子家族,通过cAMP 反应元件(cAMP response element,CRE)调节cAMP和钙离子依赖性基因的表达.CREB4是CREB转录因子家族的一员.经酵母双杂交筛选人胎脑文库发现CREB4215-279aa可能与核转运因子kayopherinα2相互作用,提示karyopherinα2可能参与CREB4的跨膜转运过程.亚细胞定位结果显示,CREB4全长定位于细胞质,而缺失C端假定转膜结构域的CREB41-279aa蛋白则转移至细胞核内.荧光共定位进一步显示,CREB4和karyopherinα2共定位于细胞质中,CREB41-279aa和karyopherinα2共定位于细胞核中.结果提示C端被切除之后,CREB4被karyopherinα2转运到核内发挥转录作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号