首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
用电子束沉积法在加热到100℃的MgO(001)基板上生长了50nm厚的FexPt100-x取向薄膜,原子比成分范围为x=[10,85].在500℃进行保温2h的原位热处理后,分析样品的结构及沿面内和垂直于薄膜方向施加磁场的磁性行为.结果表明,随着x的增加,易磁化轴的方向在沿平行于膜面方向和垂直于膜面方向之间反复变化,取决于内秉的磁晶各向异性与外秉的形状各向异性之间的竞争.当x=60时,由于薄膜发生不完全的A1→L10相转变,形成了A1软磁相与L10硬磁相的复合体,样品沿平行和垂直于膜面方向磁化的矫顽力都达到5kOe(1Oe=79.5775Am-1)以上.沿膜面方向磁化时,矫顽力高于软磁相的磁晶各向异性场,并且正负向磁化的剩余磁化强度明显不相等.采用三磁畴软磁相模型,结合硬磁/软磁交换耦合作用,对此进行了解释.这种硬磁/软磁复合材料适合于用来制作磁力显微镜的各向同性高矫顽力探针.  相似文献   

2.
[FePt/Ag]n多层颗粒膜的磁学性能及微观结构   总被引:1,自引:0,他引:1  
采用磁控溅射方法制备了一系列[FePt/Ag]n多层颗粒膜,经过退火处理,用原子力磁力显微镜和振动样品磁强计研究了其微观结构及磁学性能.研究结果表明:在FePt薄膜中加入适当含量的Ag有利于FePt在较低退火温度下发生有序化相变,但在FePt有序化相变完成之后,颗粒膜中的Ag原子的扩散阻碍薄膜矫顽力的进一步提高;[FePt/Ag]n颗粒膜的晶粒及其岛状磁畴的大小随着退火温度的升高而增大;溅射成膜过程中适当的基片加温有利于降低[FePt/Ag]n颗粒膜的后续退火处理温度.  相似文献   

3.
运用微磁学方法讨论了Stoner-Wohlfarth(SW)模型中单畴粒子的矫顽力、临界场、磁滞回线及其磁能积.当外场与粒子易磁化轴的夹角α≤45°时,矫顽力等于临界场;当α>45°时,矫顽力比临界场小得多.将SW模型简化成更简单的一致转动模型,计算了由硬磁、软磁两相构成的复合双层膜.计算结果表明,当硬软磁两相的易磁化轴都与外磁场平行(α=0°)时,对于λ(=Ks/Kh)值,其磁滞回线为矩形,即临界场等于矫顽力.随着λ的增大,矫顽力和临界场都增大;当外磁场与硬磁相的易轴平行,与软磁相的易轴垂直(α=90°)时,磁滞回线还是矩形的,但矫顽力和临界场随着λ的增大而减小.  相似文献   

4.
采用直流磁控溅射方法在表面氧化的Si(001)基片上制备不同厚度的FePt薄膜, 并利用原子力显微镜(AFM)、 X射线衍射(XRD)和振动样品磁强计(VSM)表征样品的形貌、结构和磁性. 结果表明: 将薄膜样品在H2气氛中经600 ℃退火1 h, 得到了L10-FePt薄膜; 薄膜具有(001)织构或明显的(001)取向生长, 随着沉积厚度
的增加, FePt的晶粒尺寸变大, 样品的有序化程度增大, (001)取向生长呈减弱的趋势; 样品均具有明显的垂直磁各向异性, 随着薄膜厚度的增加, 平行膜面矫顽力增大, 垂直膜面矫顽力先增大后减小, 当沉积厚度为10 nm时, 样品的垂直磁各向异性最佳.  相似文献   

5.
从磁性粒子的静磁场出发,分析计算了由软,硬磁性两相粒子随机混合的双相磁体中的静磁作用,计算得出:取向的硬磁粒子施加于磁体中软磁相上的静磁场,在磁化方向上的分量为1个正值,它正比于硬磁相的体积分数及其饱和磁化强度,其作用将提高软磁相的矫顽力。  相似文献   

6.
采用直流和射频磁控溅射在Si(001)基片上制备Ag/FePt/C薄膜,并将其在不同温度下进行真空热处理,得到了具有高矫顽力的L10-FePt薄膜.利用X射线荧光(XRF)、X射线衍射(XRD)和振动样品磁强计(VSM)研究样品的成分、结构和磁性.结果表明,样品经400℃热处理后发生了无序—有序相转变,以Ag元素为底层可降低有序化温度,添加Ag和C可抑制晶粒生长.随着热处理温度的升高,FePt的晶粒尺寸和矫顽力逐渐增大,经600℃热处理后,样品中FePt的平均晶粒尺寸为14nm,垂直膜面和平行膜面的矫顽力分别为798.16kA/m和762.35kA/m.  相似文献   

7.
采用微磁模拟技术研究了一种高磁场传感器.该传感器的钉扎层采用垂直于膜面磁化的L10-FePt薄膜,感应层即自由层采用膜面内磁化的软磁NiFe薄膜.模拟计算表明,该传感器的磁场感应范围可提升到一个特斯拉,钉扎层的矫顽力和感应层的退磁场决定着该传感器的正负磁场感应窗是否对称.  相似文献   

8.
用直流磁控溅射方法和原位退火工艺在玻璃基片上制备了FexPt100-x纳米颗粒膜.研究发现,Fe含量对FePt纳米颗粒膜的微结构和磁特性有很大的影响.矫顽力随Fe含量的增加而增大,当x=48时矫顽力Hc达到了1 040 kA/m,样品出现很好的有序化L10结构扫描探针显微镜(SPM)观察结果显示,所有样品具有横跨数个晶粒的粒状磁畴,Fe48Pt52的粗糙度Ra大约0.6 nm.  相似文献   

9.
采用磁控溅射法在Si0001基片上制备了FePt薄膜,薄膜样品经过650℃热处理1 h.利用X射线衍射仪和振动样品磁强计对样品的结构和磁性进行了测量和分析.结果表明,样品经过650℃热处理后均形成了有序面心四方结构的L10-FePt相.当FePt薄膜厚度达到20 nm时,样品平行膜面和垂直膜面的矫顽力最大,分别是9.2和8.0 kOe.随着厚度的增加,样品平均晶粒度增大,平行膜面和垂直膜面的矫顽力均呈现减小趋势.  相似文献   

10.
采用直流对靶磁控溅射方法生长了FePt/Ta多层膜.X射线衍射(XRD)分析表明[FePt(2.5.nm)/Ta(2.5 nm)]5样品经过650℃退火实现了从无序到有序的转变.磁测量表明当Ta层厚度为2.5 nm时,FePt的磁特性达到最好,矫顽力为543.4 kA·m-1,矩形比也达到最大(0.805 59).原子力显微图观察发现,650℃退火后的样品纳米晶粒分布比较均匀,粒径大约为10~20 nm.磁力显微图观察说明大量粒子取向一致.计算得到激活体积远大于晶粒体积的事实说明薄膜的磁化反转过程主要是由磁矩转动控制的.  相似文献   

11.
通过多靶射频磁控溅射系统在玻璃基片上制备了SmCo/Cu磁性薄膜.采用控制变量法优化了磁性层溅射工艺参数,制备出了矫顽力高达2400 Oe的溅射态SmCo面内磁化膜;通过控制溅射Cu底层时的基片温度,薄膜磁化方向有从面内向垂直方向转变的趋势,并制备出矫顽力达到6215 Oe的垂直面内方向的SmCo/Cu薄膜;利用扫描隧道显微镜(STM)分析SmCo薄膜在不同温度下的表面形貌发现,150℃时薄膜的晶粒尺寸较小有利于改善薄膜磁性能.  相似文献   

12.
采用直流磁控溅射技术在自然氧化的Si基片上生长厚度约为100nm的原始态FePt:Ag纳米复合薄膜,采用高压退火调控该薄膜的微结构和矫顽力。在873 K温度下,当退火压力从常压增加到0.6 GPa时,退火后所生成的L10-FePt薄膜的有序畴尺寸从d=19 nm减小到D=9 nm,FePt薄膜的晶粒尺寸从D=34 nm减小到D=13nm,且有序畴尺寸和晶粒尺寸分布的均匀性明显提高。随着退火压力的增加FePt:Ag薄膜的矫顽力降低,因此,高压退火可以用来调控FePt:Ag复合薄膜的矫顽力。  相似文献   

13.
强磁场退火对FePt薄膜结构与磁性能的影响   总被引:1,自引:0,他引:1  
为减少FePt纳米薄膜退火过程中晶粒团聚长大,进行了在外加强磁场条件下的退火实验。对化学法制备的FePt纳米薄膜,经热处理后外加磁场,并使用X射线衍射仪、透射电子显微镜、扫描电子显微镜、振动样品磁强计表征薄膜的结构、晶粒尺寸和磁性能。实验发现:外加7.96MA.m-1磁场450℃退火,样品即开始有序化相变;外加7.96MA.m-1磁场600℃退火,样品有序度要高于常规退火样品;外加1.59~6.37 MA.m-1磁场550℃退火,样品晶粒明显细化、矫顽力明显提高。因此,强磁场退火能降低FePt薄膜有序化相变温度,提高有序度、细化晶粒和提高矫顽力。  相似文献   

14.
使用对靶直流磁控溅射和原位退火方法在普通玻璃基底上制备了C/FePt/Fe纳米颗粒薄膜.通过表征分析表明,加入C覆盖层对FePt薄膜的微结构有较大的影响.经过退火处理后C颗粒渗透到磁性层中,起到了隔离磁性颗粒和减弱颗粒间结合能的效果,并且减弱了磁性颗粒间强的交换耦合作用,最终使颗粒和磁畴减小,增加了L10结构的有序程度;样品获得了1 089kA/m的矫顽力.  相似文献   

15.
用磁控溅射法在加热的MgO(001)基片上生长FeRh-FePt双层取向薄膜,试图使两层都有序化并分析其反铁磁-铁磁转变性质.结果表明,覆盖于FePt层之上的FeRh层可以在不发生层间混合的前提下,于450°C依靠长时间热处理出现有序化,从而获得较为理想的(B2-FeRh)-(L10-FePt)双层复合薄膜.改变FeRh层的成分和控制FePt层的有序化程度能够裁剪其反铁磁-铁磁转变行为.在彻底有序化的FePt层上生长富Fe的FeRh层会导致热滞温度为负.而FePt层适当欠有序化则可以将反铁磁-铁磁转变温度由100°C提高到200°C,使其进一步远离室温.这有利于用来制作采用热辅助技术的垂直磁记录介质.从Pt扩散阈值的角度对反铁磁-铁磁转变举动变化的可能原因进行了讨论.  相似文献   

16.
为减少FePt纳米薄膜退火过程中晶粒团聚长大,进行了在外加强磁场条件下退火实验。对化学法制备的FePt纳米薄膜,经热处理后外加磁场,并使用X射线衍射仪、透射电子显微镜、扫描电子显微镜、振动样品磁强计表征薄膜的结构、晶粒尺寸和磁性能。实验发现:外加7.96MA.m-1磁场450℃退火,样品即开始有序化相变;外加7.96MA.m-1磁场600℃退火,样品有序度要高于常规退火样品;外加1.59~6.37MA.m-1磁场550℃退火,样品晶粒明显细化、矫顽力明显提高。因此,强磁场退火能降低FePt薄膜有序化相变温度,提高有序度、细化晶粒和提高矫顽力。  相似文献   

17.
用FeAl合金作为下底层,用MgO作为中间层,在MgO(001)基片上生长了FePt薄膜.对FeAl下底层在300℃以上进行热处理,可以使其相结构转变为有序的B2相.热处理温度为400℃时,FeAl下底层内因热运动产生的空位没有在表面发生聚集,因而其表面最为平整.由于MgO,FeAl和FePt三者间良好的晶格匹配关系,使得FePt薄膜的生长具有垂直取向.FeAl下底层可以有效地降低FePt薄膜的相转变温度,而MgO中间层可以有效地避免层问扩散.在400℃的较低温度条件下,获得了尺寸约为10nrn的垂直取向L10相FePt均匀颗粒,室温矫顽力达到~20kOe.这种薄膜有希望应用于垂直磁记录介质.  相似文献   

18.
室温下利用磁控溅射法,在玻璃基片上沉积了Ti(3 nm)/Ni(30 nm)/Ti(t=3,5,7,10 nm)磁性薄膜.实验发现,500℃退火30min,覆盖层厚度t=7 nm时,样品的矫顽力达到最大.利用振动样品磁强计、扫描探针显微镜观测了样品的磁特性、表面形貌和磁畴,X射线衍射图谱表明,样品中的Ni颗粒形成了面心立方(FOC)结构.  相似文献   

19.
通过微磁学方法,系统计算了硬磁/软磁多层膜(Nd2Fe14B/-Fe多层膜)在晶轴和外场存在夹角情况下的磁矩空间分布、磁滞回线和磁能积.计算表明,在膜面内易轴的偏角对磁性多层膜的磁化反转过程以及剩磁和钉扎场的影响较大.与=0°的情况相比,偏角不为0°时,体系没有明显的成核点.只有在剩磁状态(H=0)时,磁性多层膜内部的磁矩才会出现一致的取向(≡),随着外场的减小,软磁相内部磁矩快速偏转,并且通过界面处的交换耦合作用带动硬磁相内部磁矩的偏转.当软磁相厚度较小时,钉扎场随着的增大先减小后增大,在等于30o附近出现一个低谷;当软磁相厚度较大时,钉扎场随着的增大而单调增大.体系的剩磁和矫顽力随着的增加都呈现出减小的趋势,导致磁能积随的增加而急剧减小,这在一定程度上解释了材料最大磁能积的实验值和理论值之间的巨大差距.  相似文献   

20.
以H.Wang等人的实验结果为依据,用微磁学理论对直径为400 nm,具有不同缺口角度的Co纳米盘在不同方向(垂直和平行于盘的缺口方向)磁场作用下的磁化反转过程进行模拟.从剩磁态、剩磁和矫顽力三个方面考察了不同缺口角度的引入对磁体磁性能的影响.比较模拟结果发现:当磁场垂直于盘的缺口方向时,获得的剩磁态均为磁通闭合磁畴结构,且此时剩磁和矫顽力都随缺口角度的增加呈增加趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号