首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 358 毫秒
1.
复合射孔技术提高瓦斯抽采率原理研究   总被引:1,自引:0,他引:1  
针对低透气性煤层瓦斯抽采效果不明显、抽采率低的问题,提出采用目前已在油气开采勘探中成熟应用的射孔技术来增大煤层孔隙率,提高瓦斯抽采效果。从原理上分析射孔技术应用于瓦斯抽采、提高瓦斯抽采率的可行性,为下一步全面开展射孔技术进行现场试验和理论分析提供依据。  相似文献   

2.
为揭示渗透率及孔隙率结构对低透气性煤层瓦斯抽采的影响,采用理论分析和试验研究方法,针对集贤煤矿9#煤层西二采区四片工作面瓦斯异常涌出与浓度超限的问题,在对工作面瓦斯的来源和向斜构造对瓦斯赋存的影响分析的基础上,实验室采用自压式三轴渗流测试装置测定了不同方向煤样试件的渗透率,应用低场核磁共振测试系统对孔隙结构分布规律进行研究,采用径向流量法对透气性系数进行测定.研究结果表明:煤层渗透率随瓦斯压力增大而降低,且表现出各向异性特征;煤层孔隙发育程度低,则渗透率降低,瓦斯渗透能力较差,吸附瓦斯含量较大,揭示了渗透率对低透气性煤层瓦斯抽采和抽采率影响较大.研究结论对低透气性煤层卸压增透措施和瓦斯抽采钻孔参数的选择具有理论指导意义.  相似文献   

3.
针对低透气性松软煤层渗透率难以提高,瓦斯抽采极为困难这一矿井瓦斯开发利用急需解决的关键问题,采用理论分析和实验的方法,开展了振荡射流在低透气性松软煤层中的动力效应研究,揭示了利用自激振荡流动力效应增加煤层裂隙率和渗透率,从而提高瓦斯抽采率的机理,现场实验结果表明,自激振荡射流可以有效地提高松软煤层的透气性。  相似文献   

4.
基于煤层瓦斯渗透各向异性特征,在九里山煤矿煤层进行了180d井下瓦斯抽采有效影响半径测试,同时,建立煤层瓦斯各向渗透异性的气-固耦合渗流模型,数值模拟了瓦斯抽采有效半径的时变规律,分析了抽采钻孔的合理布置方式。研究结果表明:煤层平行层理方向的渗透率是垂直层理方向的渗透率的2.6倍左右。煤层钻孔不同方向有效抽采半径均随抽采时间增加而增大,且与预抽时间满足幂指数关系,数值模拟结果与井下现场测量一致。有效抽采距离在平行层理方向最大,垂直层理方向最小,有效抽采区域为椭圆形。据此确定了不同预抽时间煤层抽采钻孔的合理间距,并针对九里山煤矿二1煤层计算分析了预抽时间与百米钻孔数的关系。  相似文献   

5.
为提高低渗煤体的瓦斯抽采性能,以重庆天府三矿为研究目标区,采用低温液氮吸附法和压汞法测定了煤层孔隙结构,分析了重庆天府矿区煤体低渗的原因,结果表明,煤体孔隙多为两端开口的平板状、管状孔,孔隙的连通性好,压汞渗透率是原位煤体渗透率的2×105倍,煤体孔隙本身的渗透性较好,煤层低渗为高地应力所致。进行了底板穿层钻孔高压水射流卸压增渗试验,试验表明,卸压后煤层渗透率增加了90倍,抽采率从17%提高到了58%,抽采量增加了4.8倍。建立了瓦斯抽采的渗流力学方程,解算了卸压增渗透前后的不同抽采时间条件下的抽采半径,优化了合理布孔间距、抽采时间,为水射流卸压抽采瓦斯效果评价提供了理论指导。  相似文献   

6.
针对高瓦斯低透气性煤层瓦斯抽采难问题,利用数值模拟软件RFPA2D-Flow再现了采取煤层深孔爆破预裂后,瓦斯在煤层及爆生裂隙中的流动规律.研究结果表明,预裂圈内煤和岩石的孔隙率大大提高,煤层透气性显著增加,但当裂隙圈之间不相交时,瓦斯同样很难在完整的低透气性煤体中运移,因此只有当抽采瓦斯钻孔处在裂隙圈中才能高效抽采瓦斯.现场试验证实,低透气性煤层预裂后,有效导通裂隙增加,布置在裂隙圈内抽采瓦斯钻孔可以获得高效抽采瓦斯效果,从而降低煤与瓦斯突出危险性.  相似文献   

7.
王正帅 《科学技术与工程》2023,23(32):13781-13787
为了掌握艾维尔沟矿区主采煤层的瓦斯运移规律、指导瓦斯抽采工作,实测了煤层多元物性参数、建立了含瓦斯煤体多场耦合模型,通过数值模拟分析了瓦斯运移特性。研究表明:矿区主采的4号、5号和6号煤层存在煤层碎软、瓦斯含量高、透气性差等不利因素,抽采难度大。随着抽采时间增加,钻孔周围基质瓦斯压力和裂隙瓦斯压力均按照一元二次函数关系规律性减小。基质瓦斯压力与裂隙瓦斯压力在抽采初期降低速度基本一致,但随抽采时间增加,裂隙瓦斯压力下降速度明显快于基质瓦斯压力,二者之间的压力差也越来越大。5号煤层裂隙瓦斯压力和基质瓦斯压力的降低速度、裂隙中渗流速度及基质中瓦斯解吸扩散速度较4号和6号煤层慢。为提高矿区抽采效果,应采取强化瓦斯抽采措施改善煤层透气性等物理性质,以提高煤层裂隙瓦斯渗流速度,促进基质瓦斯解吸扩散,5号煤层应采取相对更加有效的增透措施。  相似文献   

8.
基于我国大部分煤层渗透率低、煤层瓦斯抽采效率低的现状,对增加煤体渗透能力的多种技术进行了应力机制分析;分析表明,采用的多种技术的共同特点是降低煤体的有效应力,从而提高煤体的孔隙和裂隙发育程度,提高煤体的渗透能力。在理论分析和实验研究的基础上提出了声频振动波增透煤体的新思路,对防治煤矿瓦斯灾害和提高煤层气抽采率具有重要的参考价值。  相似文献   

9.
煤层钻孔瓦斯抽放数值模拟   总被引:3,自引:0,他引:3  
为了寻求合理的钻孔抽放参数,采用数值模拟的方法,应用计算流体力学软件fluent6.3建立了钻孔瓦斯抽放流动模型,通过气体渗流理论模拟抽放过程瓦斯流动规律,分析了抽放负压和煤层渗透率对瓦斯抽放效果的影响规律。结果表明:瓦斯抽放有效半径为2 m左右,抽放负压对抽放半径的影响不是很明显;瓦斯抽出量随抽放负压的升高而增加;煤层渗透率对瓦斯抽放量的影响比较大。模拟的抽放影响半径与现场实测结果基本一致。该模型可以对现场瓦斯抽放提供理论指导。  相似文献   

10.
瓦斯抽采对于立井揭突出煤层起到重要的作用,准确的确定钻孔瓦斯有效抽采半径和合理的在待抽煤层中布置抽采钻场对煤层消突具有关键性作用。基于多孔介质中流体流动达西定律理论,采用COMSOL Multiphysics软件对该煤层瓦斯抽采进行了模拟。模拟结果表明,此煤层的瓦斯有效抽采半径为3m,随着抽采时间的增加,煤层瓦斯压力逐渐的降低,但降低的速率会逐渐的减小。瓦斯抽采30天后,其残余的瓦斯压力为0.18MPa,这与现场实测的最大残余瓦斯压力0.2MPa相接近,这说明了模型的可信性,其模拟结果可为瓦斯抽采设计提供参考。  相似文献   

11.
本煤层单一顺层瓦斯抽采钻孔的渗流场数值模拟   总被引:1,自引:0,他引:1  
针对本煤层瓦斯抽采钻孔的合理布置问题,通过建立钻孔抽采瓦斯的渗流场控制方程和煤层变形场控制方程,结合钻孔抽采瓦斯的初始及边界条件,推导出钻孔抽采瓦斯渗流的固气耦合数学模型.以石壕煤矿本煤层单一顺层钻孔瓦斯抽采为工程实例,基于研究区域的煤层瓦斯赋存特征,采用数值模拟计算方法,获得了本煤层单一顺层钻孔周围煤层瓦斯压力、煤层瓦斯渗透率、煤层瓦斯渗流速度和煤层变形的分布规律.确定了本煤层单一顺层钻孔抽采瓦斯的有效影响半径,从而为本煤层单一顺层瓦斯抽采钻孔的优化布置提供了依据.研究结果表明,石壕煤矿本煤层单一顺层钻孔抽采瓦斯的有效半径分别为4 m左右;在延长钻孔抽放时间不到20%的情况下,减少了钻孔工程量50%左右,抽采效果良好.  相似文献   

12.
为研究瓦斯矿井本煤层准确测定瓦斯有效抽采半径问题,提出了利用吨煤瓦斯抽采量计算钻孔瓦斯有效抽采半径的测定方法.基于瓦斯钻孔衰减负指数规律建立钻孔瓦斯抽采模型,解算出吨煤瓦斯抽采量,并与其煤层原始瓦斯含量对比,得出煤层残存瓦斯含量Wc和抽采率η,以此判断钻孔瓦斯有效抽采半径,只有同时满足{Wc≤8m3/t∩η≥30%},才为钻孔瓦斯有效抽采半径.研究结果表明:随着预抽时间延长,钻孔瓦斯有效抽采半径逐渐增大,直至极限抽采半径.通过工程实践,分析了不同时间的有效抽采半径,为瓦斯矿井抽采工作提供了可靠的抽采参数,具有实际应用价值.  相似文献   

13.
为提高深部煤层瓦斯抽采效率,研究抽采钻孔周围煤体的瓦斯渗流规律十分关键。文中基于煤体的各向异性和非均质性,考虑煤体应力变形场和瓦斯渗流场的交叉耦合作用,分析了煤层抽采中水力割缝钻孔周围瓦斯压力以及渗透率的时空演化规律。结果表明:煤体的各向异性和非均质性影响割缝钻孔周围的瓦斯渗流规律。对于瓦斯压力的变化,平行层理方向瓦斯压力降幅大于垂直层理方向,抽采影响范围分布呈现"椭圆形",煤体各向异性表征明显。对于渗透率的变化,平行层理方向的煤层渗透率高于垂直层理方向,抽采初期渗透率的增加幅度较快,随后逐渐减缓,渗透率变化曲线呈现不规则"锯齿形",煤体非均质性表征明显。将数值模拟结果与杨柳矿4~#钻场瓦斯抽采的实际监测情况相互对比,现场实测的瓦斯抽采情况与模拟得到情况基本吻合,从而验证了数值模拟的合理性及工程适用性。  相似文献   

14.
钻孔预抽煤层瓦斯是目前治理矿井瓦斯的主要措施。以瓦斯渗流理论为基础,以钻孔抽采周围流场为径向流场,建立了钻孔周围瓦斯流动数学方程;并结合鹤煤九矿3104工作面具体抽采条件,利用COMSOL Multiphysics软件对钻孔预抽煤层瓦斯在不同抽采时间、不同抽采负压和不同钻孔直径下周围瓦斯压力分布进行数值模拟。并将上述模拟结果确定的抽采钻孔布置参数在3104采煤工作面进行煤层瓦斯预抽实践;抽采后经效果检验,残余瓦斯压力、残余瓦斯含量等均与《煤矿瓦斯抽采基本指标》中的相关规定相符合,3104工作面已经消除了煤与瓦斯突出的危险性。  相似文献   

15.
以揭示急倾斜含瓦斯煤层温度场(Thermal)、渗流场(Hydrological)及应力场(Mechanical)的耦合影响作用为目的,通过借助多物理场数值分析软件(COMSOL),建立急倾斜含瓦斯煤层THM多场耦合数值计算模型,计算得出单孔抽采瓦斯过程中急倾斜煤岩体渗透率、温度及瓦斯压力随时间变化关系,并依托现场瓦斯抽采实践,提出合理的急倾斜煤层瓦斯治理措施与建议。结果表明:单孔抽采过程中随着时间延长,抽采影响范围越大,瓦斯压力逐渐减小;随着瓦斯抽采钻孔深度增加,单孔内部瓦斯压力增大,但压力变化梯度逐渐减小,孔壁温度小于其附近煤体温度;依据单孔瓦斯抽采过程中煤岩体温度、压力及时间的非线性关系,制定了采空区埋管抽采、顶板走向高位钻孔抽采及卸压拦截抽采3种技术方案,工程应用效果显著。  相似文献   

16.
张凯 《科技信息》2010,(25):349-349
伴随着煤层的开采,应力卸除,煤层透气性急剧增大,瓦斯涌出量增加。合理的抽采方式既能保证安全开采,又能利用煤层气这一清洁能源。根据开采影响,探讨了本煤层和有保护层的煤层的抽采治理,以实现煤与瓦斯的安全有效共采。  相似文献   

17.
为提高低透煤层瓦斯抽采效果,提出了一种掏穴扩孔增透技术。以李嘴孜矿A1煤为研究对象,通过现场测试与分析,考察了A1煤掏穴扩孔前后瓦斯抽采影响半径,抽采浓度和抽采纯量;同时采用RFPA2D-Flow模拟软件模拟了扩孔前后煤层裂隙的起裂及扩展过程,分析了掏穴扩孔钻孔对煤层透气性的影响。结果表明:掏穴扩孔钻孔增加了钻孔内壁表面积,增大周围煤体裂隙,使得周围煤体中的应力得到释放。掏穴扩孔后,瓦斯抽采影响半径提高了1.3倍,抽采浓度提高1.9倍,抽采纯量提高了2.3倍,因此,掏穴扩孔钻孔具有提高钻孔瓦斯抽采效果,达到快速消突的目的。  相似文献   

18.
本文选用新安煤矿17#煤层111706采煤工作面作为本煤层顺层钻孔预抽瓦斯技术试验区,研究17#煤层合理的预抽瓦斯技术参数值。通过对该矿17#煤层111706工作面预抽瓦斯数据分析得出:预抽试验区采用交叉布孔法预抽量可提高40%,Φ94 mm大直径钻孔预抽量比Φ65 mm直径钻孔增加34%,以预抽率作为17#煤层预抽防突有效性指标是可行的。预抽率大于25%时,就可以达到消除煤与瓦斯突出危险。但只有预抽率达到30%以上,钻屑检验指标K1才不会超标。钻场内钻孔抽采瓦斯浓度大于巷道钻孔抽采瓦斯浓度可达1倍,其最小封孔深度应不小于5 m.建议施工双向抽采钻孔来覆盖全工作面,掘进工作面钻孔深度控制在100 m范围内。  相似文献   

19.
针对高瓦斯中低渗透率厚煤层工作面常规预抽钻孔预抽浓度低、钻孔衰减系数大、瓦斯预抽时间长等难题,以保德煤矿8号煤层为研究对象。通过8号煤层渗透率各项异性实验分析和现场测试,对8号煤层钻孔布孔方位以及封孔工艺最优参数进行研究。结果表明:预抽钻孔与煤壁裂隙呈90°,钻孔倾角为-6°时钻孔抽采效果最好;采用新材料+囊袋作为封孔材料,封孔距离8~16 m时,增大压力和“两堵两注”的注浆方式,能有效地提供封孔的气密性。通过3种不同的测试方法,确定4个月时的钻孔抽采有效半径约为4 m, 6个月有效抽采半径为4.5 m。以此为依据,得出工作面瓦斯抽采钻孔最佳布置参数。研究成果为高瓦斯低渗透率厚煤层工作面预抽钻孔设计提供了参考依据。  相似文献   

20.
本文选用新安煤矿17#煤层111706采煤工作面作为本煤层顺层钻孔预抽瓦斯技术试验区,研究17#煤层合理的预抽瓦斯技术参数值.通过对该矿17#煤层111706工作面预抽瓦斯数据分析得出:预抽试验区采用交叉布孔法预抽量可提高40%,Φ94 mm大直径钻孔预抽量比Φ65 mm直径钻孔增加34%,以预抽率作为17#煤层预抽防突有效性指标是可行的.预抽率大于25%时,就可以达到消除煤与瓦斯突出危险.但只有预抽率达到30%以上,钻屑检验指标K1才不会超标.钻场内钻孔抽采瓦斯浓度大于巷道钻孔抽采瓦斯浓度可达1倍,其最小封孔深度应不小于5m.建议施工双向抽采钻孔来覆盖全工作面,掘进工作面钻孔深度控制在100 m范围内.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号