首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intestinal epithelial barrier and mucosal immunity   总被引:12,自引:0,他引:12  
The innate immune system plays a crucial role in maintaining the integrity of the intestine and protecting the host against a vast number of potential microbial pathogens from resident and transient gut microflora. Mucosal epithelial cells and Paneth cells produce a variety of antimicrobial peptides (defensins, cathelicidins, crytdinrelated sequence peptides, bactericidal/permeabilityincreasing protein, chemokine CCL20) and bacteriolytic enzymes (lysozyme, group IIA phospholipase A2) that protect mucosal surfaces and crypts containing intestinal stem cells against invading microbes. Many of the intestinal antimicrobial molecules have additional roles of attracting leukocytes, alarming the adaptive immune system or neutralizing proinflammatory bacterial molecules. Dysfunction of components of the innate immune system has recently been implicated in chronic inflammatory bowel diseases such as Crohn's disease and ulcerative colitis, illustrating the pivotal role of innate immunity in maintaining the delicate balance between immune tolerance and immune response in the gut.  相似文献   

2.
Pattern recognition receptors are somatically encoded and participate in the innate immune responses of a host to microbes. It is increasingly acknowledged that these receptors play a central role both in beneficial and pathogenic interactions with microbes. In particular, these receptors participate actively in shaping the gut environment to establish a fruitful life-long relationship between a host and its microbiota. Commensal bacteria engage Toll-like receptors (TLRs) and nucleotide oligomerization domain (NOD)-like receptors (NLRs) to induce specific responses by intestinal epithelial cells such as production of antimicrobial products or of a functional mucus layer. Furthermore, a complex crosstalk between intestinal epithelial cells and the immune system is initiated leading to a mature gut-associated lymphoid tissue to secrete IgA. Impairment in NLR and TLR functionality in epithelial cells is strongly associated with chronic inflammatory diseases such as Crohn’s disease, cancer, and with control of the commensal microbiota creating a more favorable environment for the emergence of new infections.  相似文献   

3.
The intestinal mucosa faces the challenge of regulating the balance between immune tolerance towards commensal bacteria, environmental stimuli and food antigens on the one hand, and induction of efficient immune responses against invading pathogens on the other hand. This regulatory task is of critical importance to prevent inappropriate immune activation that may otherwise lead to chronic inflammation, tissue disruption and organ dysfunction. The most striking example for the efficacy of the adaptive nature of the intestinal mucosa is birth. Whereas the body surfaces are protected from environmental and microbial exposure during fetal life, bacterial colonization and contact with potent immunostimulatory substances start immediately after birth. In the present review, we summarize the current knowledge on the mechanisms underlying the transition of the intestinal mucosa during the neonatal period leading to the establishment of a stable, life-long host–microbial homeostasis. The environmental exposure and microbial colonization during the neonatal period, and also the influence of maternal milk on the immune protection of the mucosa and the role of antimicrobial peptides, are described. We further highlight the molecular mechanisms of innate immune tolerance in neonatal intestinal epithelium. Finally, we link the described immunoregulatory mechanisms to the increased susceptibility to inflammatory and infectious diseases during the neonatal period.  相似文献   

4.
There is an immense load of non-pathogenic commensal bacteria in the distal small intestine and the colon of mammals. The physical barrier that prevents penetration (translocation) of these organisms into the body is a simple epithelium comprised of the single enterocyte/colonocyte cell layer with its overlying mucus. In this review, we discuss the roles of intestinal T cells in initiating and regulating innate and adaptive mucosal immune responses of the mucosal immune system that avoid or limit penetration of the commensal intestinal bacteria. Received 9 August 2002; accepted 9 September 2002 RID="*" ID="*"Corresponding author.  相似文献   

5.

A highly conserved but convoluted network of neurons and glial cells, the enteric nervous system (ENS), is positioned along the wall of the gut to coordinate digestive processes and gastrointestinal homeostasis. Because ENS components are in charge of the autonomous regulation of gut function, it is inevitable that their dysfunction is central to the pathophysiology and symptom generation of gastrointestinal disease. While for neurodevelopmental disorders such as Hirschsprung, ENS pathogenesis appears to be clear-cut, the role for impaired ENS activity in the etiology of other gastrointestinal disorders is less established and is often deemed secondary to other insults like intestinal inflammation. However, mounting experimental evidence in recent years indicates that gastrointestinal homeostasis hinges on multifaceted connections between the ENS, and other cellular networks such as the intestinal epithelium, the immune system, and the intestinal microbiome. Derangement of these interactions could underlie gastrointestinal disease onset and elicit variable degrees of abnormal gut function, pinpointing, perhaps unexpectedly, the ENS as a diligent participant in idiopathic but also in inflammatory and cancerous diseases of the gut. In this review, we discuss the latest evidence on the role of the ENS in the pathogenesis of enteric neuropathies, disorders of gut–brain interaction, inflammatory bowel diseases, and colorectal cancer.

  相似文献   

6.
The gastrointestinal epithelium is a highly organised tissue that is constantly being renewed. In order to maintain homeostasis, the balance between intestinal stem cell (ISC) self-renewal and differentiation must be carefully regulated. In this review, we describe how the intestinal stem cell niche provides a unique environment to regulate self-renewal and differentiation of ISCs. It has traditionally been believed that the mesenchymal myofibroblasts play an important role in the crosstalk between ISCs and the niche. However, recent evidence in Drosophila and in vertebrates suggests that epithelial cells also contribute to the niche. We discuss the multiple signalling pathways that are utilised to regulate stemness within the niche, including members of the Wnt, BMP and Hedgehog pathways, and how aberrations in these signals lead to disruption of the normal crypt–villus axis. Finally, we also discuss how CDX1 and inhibition of the Notch pathway are important in specifying enterocyte and goblet cell differentiation respectively.  相似文献   

7.
Intestinal mucosa integrates primary digestive functions with immune functions such as pathogen surveillance, antigen transport and induction of mucosal immunity and tolerance. Intestinal adaptive immunity is elicited in organized mucosa-associated lymphoid tissue (O-MALT) that is composed of antigen-presenting cells and lymphocytes and achieved by effector cells widely distributed in mucosa (diffuse MALT or D-MALT). Interaction between the intestinal epithelium, the O-MALT and the diffuse MALT plays a critical role in establishing an adequate immune response. In regions associated to O-MALT, lympho-epithelial cross-talks lead to acquisition of a specific epithelial phenotype that contributes to O-MALT organization and functionality. Beyond the expression of several innate immune functions, the intestinal epithelium may directly take up and present antigens due to the expression of major histocompatibility complex (MHC) and MHC-related molecules. A complex genetic program that will be outlined in the present review controls the development of immune functions of the intestinal epithelium. The effect of environmental signals on the modulation of this ontogenetic program during development and neonatal life, from bioactive components of amniotic fluid to lactation and bacterial colonization, will be discussed.  相似文献   

8.
The innate immune system recognizes deviation from homeostasis caused by infectious or non-infectious assaults. The threshold for its activation seems to be established by a calibration process that includes sensing of microbial molecular patterns from commensal bacteria and of endogenous signals. It is becoming increasingly clear that adaptive features, a hallmark of the adaptive immune system, can also be identified in the innate immune system. Such adaptations can result in the manifestation of a primed state of immune and tissue cells with a decreased activation threshold. This keeps the system poised to react quickly. Moreover, the fact that the innate immune system recognizes a wide variety of danger signals via pattern recognition receptors that often activate the same signaling pathways allows for heterologous innate immune stimulation. This implies that, for example, the innate immune response to an infection can be modified by co-infections or other innate stimuli. This “design feature” of the innate immune system has many implications for our understanding of individual susceptibility to diseases or responsiveness to therapies and vaccinations. In this article, adaptive features of the innate immune system as well as heterologous innate immunity and their implications are discussed.  相似文献   

9.
Plants have an innate immunity system to defend themselves against pathogens. With the primary immune system, plants recognize microbe-associated molecular patterns (MAMPs) of potential pathogens through pattern recognition receptors (PRRs) that mediate a basal defense response. Plant pathogens suppress this basal defense response by means of effectors that enable them to cause disease. With the secondary immune system, plants have gained the ability to recognize effector-induced perturbations of host targets through resistance proteins (RPs) that mediate a strong local defense response that stops pathogen growth. Both primary and secondary immune responses in plants depend on germ line-encoded PRRs and RPs. During induction of local immune responses, systemic immune responses also become activated, which predispose plants to become more resistant to subsequent pathogen attacks. This review gives an update on recent findings that have enhanced our understanding of plant innate immunity and the arms race between plants and their pathogens. Received 24 June 2007; received after revision 18 July 2007; accepted 15 August 2007  相似文献   

10.
The gut microbiota is essential to health and has recently become a target for live bacterial cell biotherapies for various chronic diseases including metabolic syndrome, diabetes, obesity and neurodegenerative disease. Probiotic biotherapies are known to create a healthy gut environment by balancing bacterial populations and promoting their favorable metabolic action. The microbiota and its respective metabolites communicate to the host through a series of biochemical and functional links thereby affecting host homeostasis and health. In particular, the gastrointestinal tract communicates with the central nervous system through the gut–brain axis to support neuronal development and maintenance while gut dysbiosis manifests in neurological disease. There are three basic mechanisms that mediate the communication between the gut and the brain: direct neuronal communication, endocrine signaling mediators and the immune system. Together, these systems create a highly integrated molecular communication network that link systemic imbalances with the development of neurodegeneration including insulin regulation, fat metabolism, oxidative markers and immune signaling. Age is a common factor in the development of neurodegenerative disease and probiotics prevent many harmful effects of aging such as decreased neurotransmitter levels, chronic inflammation, oxidative stress and apoptosis—all factors that are proven aggravators of neurodegenerative disease. Indeed patients with Parkinson’s and Alzheimer’s diseases have a high rate of gastrointestinal comorbidities and it has be proposed by some the management of the gut microbiota may prevent or alleviate the symptoms of these chronic diseases.  相似文献   

11.
Leukotrienes: Mediators that have been typecast as villains   总被引:2,自引:0,他引:2  
As befalls many mediators that act upon the human stage, leukotrienes have become identified with their most powerful roles as villains of the immune system. They are well known for their leading roles in allergic diseases, including asthma. They also have gained recognition for their dramatic role as promoters of inflammation. As new roles for these lipid messengers are sought, it is becoming apparent that the leukotrienes have been typecast as bad guys of the immune system. As examples, their more recent roles have been in atherosclerosis, pulmonary fibrosis and cancer. However, upon further evaluation, we can begin to see their versatility. Thus, leukotrienes stimulate innate immunity against pathogens. In addition, they promote the expression of mediators, receptors and other molecules that are important for immune defense. In these lesser known roles, they lead the fight against bacterial, fungal and viral infection. This review is intended to shed light on the leukotrienes, where they come from and what we really know about them.  相似文献   

12.
Inflammation serves as the first line of defense in response to tissue injury, guiding the immune system to ensure preservation of the host. The inflammatory response can be divided into a quick initial phase mediated mainly by innate immune cells including neutrophils and macrophages, followed by a late phase that is dominated by lymphocytes. Early in the new millennium, a key component of the inflammatory reaction was discovered with the identification of a number of cytosolic sensor proteins (Nod-like receptors) that assembled into a common structure, the ‘inflammasome’. This structure includes an enzyme, caspase-1, which upon activation cleaves pro-forms of cytokines leading to subsequent release of active IL-1 and IL-18. This review focuses on the role of IL-18 in inflammatory responses with emphasis on autoimmune diseases.  相似文献   

13.
Recognition of bacterial peptidoglycan by the innate immune system   总被引:15,自引:0,他引:15  
The innate immune system recognizes microorganisms through a series of pattern recognition receptors that are highly conserved in evolution. Peptidoglycan (PGN) is a unique and essential component of the cell wall of virtually all bacteria and is not present in eukaryotes, and thus is an excellent target for the innate immune system. Indeed, higher eukaryotes, including mammals, have several PGN recognition molecules, including CD14, Toll-like receptor 2, a family of peptidoglycan recognition proteins, Nod1 and Nod2, and PGN-lytic enzymes (lysozyme and amidases). These molecules induce host responses to microorganisms or have direct antimicrobial effects.Received 15 January 2003; received after revision 28 February 2003; accepted 26 March 2003  相似文献   

14.
The composition of the gut microbiota is in constant flow under the influence of factors such as the diet, ingested drugs, the intestinal mucosa, the immune system, and the microbiota itself. Natural variations in the gut microbiota can deteriorate to a state of dysbiosis when stress conditions rapidly decrease microbial diversity and promote the expansion of specific bacterial taxa. The mechanisms underlying intestinal dysbiosis often remain unclear given that combinations of natural variations and stress factors mediate cascades of destabilizing events. Oxidative stress, bacteriophages induction and the secretion of bacterial toxins can trigger rapid shifts among intestinal microbial groups thereby yielding dysbiosis. A multitude of diseases including inflammatory bowel diseases but also metabolic disorders such as obesity and diabetes type II are associated with intestinal dysbiosis. The characterization of the changes leading to intestinal dysbiosis and the identification of the microbial taxa contributing to pathological effects are essential prerequisites to better understand the impact of the microbiota on health and disease.  相似文献   

15.
Mammalian toll-like receptors: from endogenous ligands to tissue regeneration   总被引:13,自引:0,他引:13  
Following injury a complex but well-orchestrated cellular response stimulating wound healing and tissue regeneration is induced. The balance of different cytokines, growth factors and cells is important in regulating tissue reorganisation. The immune system is critically involved in this process. Toll-like receptors (TLRs) are essential to the innate immune system, recognising microbial pathogens. The recent identification of endogenous ligands of TLRs suggests that they function not only to induce defensive antimicrobial immune responses but also as a sensitive detection system to initiate tissue regeneration after injury. Here we present an overview of TLRs and their endogenous ligands, and also review the roles of TLRs in inducing tissue regeneration after injury and in maintaining homeostasis. The identification of endogenous TLR ligands and their involvement in inducing tissue regeneration will provide new options to improve tissue reorganization after injury. Received 26 April 2006; received after revision 16 June 2006; accepted 24 August 2006  相似文献   

16.
Regulation of intestinal epithelial permeability by tight junctions   总被引:1,自引:0,他引:1  
The gastrointestinal epithelium forms the boundary between the body and external environment. It effectively provides a selective permeable barrier that limits the permeation of luminal noxious molecules, such as pathogens, toxins, and antigens, while allowing the appropriate absorption of nutrients and water. This selective permeable barrier is achieved by intercellular tight junction (TJ) structures, which regulate paracellular permeability. Disruption of the intestinal TJ barrier, followed by permeation of luminal noxious molecules, induces a perturbation of the mucosal immune system and inflammation, and can act as a trigger for the development of intestinal and systemic diseases. In this context, much effort has been taken to understand the roles of extracellular factors, including cytokines, pathogens, and food factors, for the regulation of the intestinal TJ barrier. Here, I discuss the regulation of the intestinal TJ barrier together with its implications for the pathogenesis of diseases.  相似文献   

17.
Monocytes and their pathophysiological role in Crohn’s disease   总被引:1,自引:1,他引:0  
Our immune system shows a stringent dichotomy, on the one hand displaying tolerance towards commensal bacteria, but on the other hand vigorously combating pathogens. Under normal conditions the balance between flora tolerance and active immunity is maintained via a plethora of dynamic feedback mechanisms. If, however, the balancing act goes faulty, an inappropriate immune reaction towards an otherwise harmless intestinal flora causes disease, Crohn’s disease for example. Recent developments in the immunology and genetics of mucosal diseases suggest that monocytes and their derivative cells play an important role in the pathophysiology of Crohn’s disease. In our review, we summarize the recent studies to discuss the dual function of monocytes - on the one hand the impaired monocyte function initiating Crohn’s disease, and on the other hand the overactivation of monocytes and adaptive immunity maintaining the disease. With a view to developing new therapies, both aspects of monocyte functions need to be taken into account. Received 1 June 2008; received after revision 24 July 2008; accepted 13 August 2008  相似文献   

18.
Neutrophils are an essential component of the innate immune response and a major contributor to inflammation. Consequently, neutrophil homeostasis in the blood is highly regulated. Neutrophil number in the blood is determined by the balance between neutrophil production in the bone marrow and release from the bone marrow to blood with neutrophil clearance from the circulation. This review will focus on mechanisms regulating neutrophil release from the bone marrow. In particular, recent data demonstrating a central role for the chemokines CXCL12 and CXCL2 in regulating neutrophil egress from the bone marrow will be discussed.  相似文献   

19.
Toll-like receptors (TLRs) are a family of pattern recognition receptors that mediate innate immune responses to stimuli from pathogens or endogenous signals. Under various pathological conditions, the central nervous system (CNS) mounts a well-organized innate immune response, in which glial cells, in particular microglia, are activated. Further, the innate immune system has emerged as a promising target for therapeutic control of development and persistence of chronic pain. Especially, microglial cells respond to peripheral and central infection, injury, and other stressor signals arriving at the CNS and initiate a CNS immune activation that might contribute to chronic pain facilitation. In the orchestration of this limited immune reaction, TLRs on microglia appear to be most relevant in triggering and tailoring microglial activation, which might be a driving force of chronic pain. New therapeutic approaches targeting the CNS innate immune system may achieve the essential pharmacological control of chronic pain. Received 21 November 2006; received after revision 8 January 2007; accepted 7 February 2007  相似文献   

20.
In the gastrointestinal tract, tachykinins are peptide neurotransmitters in nerve circuits that regulate intestinal motility, secretion, and vascular functions. Tachykinins also contribute to transmission from spinal afferents that innervate the gastrointestinal tract and have roles in the responses of the intestine to inflammation. Tachykinins coexist with acetylcholine, the primary transmitter of excitatory neurons innervating the muscle, and act as a co-neurotransmitter of excitatory neurons. Excitatory transmission is mediated through NK1 receptors (primarily on interstitial cells of Cajal) and NK2 receptors on the muscle. Tachykinins participate in slow excitatory transmission at neuro-neuronal synapses, through NK1 and NK3 receptors, in both ascending and descending pathways affecting motility. Activation of receptors (NK1 and NK2) on the epithelium causes fluid secretion. Tachykinin receptors on immune cells are activated during inflammation of the gut. Finally, tachykinins are released from the central terminals of gastrointestinal afferent neurons in the spinal cord, particularly in nociceptive pathways. Received 24 March 2007; received after revision 30 August 2007; accepted 14 September 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号