首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Co_3O_4 is a promising high-performance anode for lithium ion batteries(LIBs), but suffers from unsatisfied cyclability originating duo to low electrical conductivity and large volume expansion during charge and discharge process. Herein, we successfully constructed the Co_3O_4 nanoparticles embedded into graphene nanoscrolls(GNSs) as advanced anode for high-performance LIBs with large capacity and exceptional cyclability. The onedimensional(1 D) Co_3O_4/GNSs were synthesized via liquid nitrogen cold quenching of large-size graphene oxide nanosheets and sodium citrate(SC) modified Co_3O_4 nanoparticles, followed by freeze drying and annealing at400 °C for 2 h in nitrogen atmosphere. Benefiting from the interconnected porous network constructed by 1 D Co_3O_4/GNSs for fast electron transfer and rapid ion diffusion, and wrinkled graphene shell for significantly alleviating the huge volume expansion of Co_3O_4 during lithiation and delithiation. The resultant Co_3O_4/GNSs exhibited ultrahigh reversible capacity of 1200 mAh g~(-1) at 0.1 C, outperforming most reported Co_3O_4 anodes.Moreover, they showed high rate capability of 600 m Ah g-1 at 5 C, and outstanding cycling stability with a high capacity retention of 90% after 500 cycles. Therefore, this developed strategy could be extended as an universal and scalable approach for intergrating various metal oxide materials into GNSs for energy storage and conversion applications.  相似文献   

2.
Iron sulfides are promising anode materials for lithium ion batteries(LIBs) owe to their high theoretical capacity and low cost. However, unsatisfactory electronic conductivity, dissolution of polysulfides, and severe agglomeration during the cycling process limit their applications. To solve these issues, a ternary FeS_2/Fe_7S_8@nitrogensulfur co-doping reduced graphene oxide hybrid(FeS_2/Fe_7S_8@NSG) was designed and synthesized through a facile hydrolysis-sulfurization strategy, in which the FeS_2/Fe_7S_8 could be well distributed upon the NSG. The NSG was believed to buffer the volume change and augment the electronic conductivity of the electrode, and the nanodimensional FeS_2/Fe_7S_8 particles with a diameter of 50–100 nm could shorten the ion-diffusion paths during the lithiation/delithiation process. Benefiting from synergistic contributions from nano-dimensional FeS_2/Fe_7S_8 and flexible NSG, the FeS_2/Fe_7S_8@NSG hybrid displayed a high initial capacity of ~1068 m Ah g~(-1) at 200 mA g~(-1),good cycling stability(~898 mAh g~(-1) at 500 mA g~(-1) after 200 cycles) and high-rate performance. Further kinetic analysis corroborated that the introduction of NSG boosted the capacitive behavior. Above results indicate the potential applications of FeS_2/Fe_7S_8@NSG hybrid in LIBs with low-cost and high energy density.  相似文献   

3.
A spherical-like Ni0.6Co0.2Mn0.2(OH)2 precursor was tuned homogeneously to synthesize LiNi0.6Co0.2Mn0.2O2 as a cathode material for lithium-ion batteries. The effects of calcination temperature on the crystal structure, morphology, and the electrochemical performance of the as-prepared LiNi0.6Co0.2Mn0.2O2 were investigated in detail. The as-prepared material was characterized by X-ray diffraction, scanning electron microscopy, laser particle size analysis, charge-discharge tests, and cyclic voltammetry measurements. The results show that the spherical-like LiNi0.6Co0.2Mn0.2O2 material obtained by calcination at 900℃ displayed the most significant layered structure among samples calcined at various temperatures, with a particle size of approximately 10 μm. It delivered an initial discharge capacity of 189.2 mAh·g-1 at 0.2C with a capacity retention of 94.0% after 100 cycles between 2.7 and 4.3 V. The as-prepared cathode material also exhibited good rate performance, with a discharge capacity of 119.6 mAh·g-1 at 5C. Furthermore, within the cut-off voltage ranges from 2.7 to 4.3, 4.4, and 4.5 V, the initial discharge capacities of the calcined samples were 170.7, 180.9, and 192.8 mAh·g-1, respectively, at a rate of 1C. The corresponding retentions were 86.8%, 80.3%, and 74.4% after 200 cycles, respectively.  相似文献   

4.
The leaching of cobalt from four-mixed Co-Cu oxidized ores containing cobalt at levels ranging from 0.5wt% to 34wt% was studied and the results has been reported. Conventional dissolution of these oxidized Co-Cu ores with diluted H2SO4 and SO2 as a reducing agent resulted in a substantial improvement in the solution based recovery of cobalt. UV/visible spectroscopic analysis of the leached solutions indicated that the increased cobalt content in the solution was a result of flushing the acidified cobalt leaching solution with SO2. Furthermore, UV/visible spectroscopy confirmed that as SO2 was flushed into the acidified leaching solution, Co3+ bearing minerals were reduced to the readily soluble Co2+ bearing minerals, and this resulted in the increase of total cobalt in the collected solution. The mechanism of the reduction of Co3+ to Co2+ bearing minerals when SO2 is flushed during the leaching of mixed Co-Cu oxidized ores, including the stability trends of Co3+, Co2+, and Cu2+ complexes, as shown by their UV/visible spectra, are also discussed.  相似文献   

5.
To promote substantially the performances of red phosphorous (P) anode for lithium and sodium-ion batteries, a simple plasma assisted milling (P-milling) method was used to in-situ synthesize SeP2/C composite. The results showed that the amorphous SeP2/C composite exhibits the excellent lithium and sodium storage performances duo to the small nano-granules size and complete combination of selenium (Se) and phosphorous (P) to generate Se–P alloy phase. It was observed that inside the granules of SeP2/C composite the nanometer size of the SeP2 particles ensured the fast kinetics for Li+ and Na+ ​transfer, and the amorphous carbon wrapping the SeP2 particles relieved volume expansion during lithium/sodium storage processes and enhances electric conductivity. Therefore, the SeP2/C electrode retained reversible capacities of 700 ​mA ​h ​g−1 at 2 ​A ​g−1 after 500 cycles and 400 ​mA ​h ​g−1 at 0.5 ​A ​g−1 after 400 cycles as anode for LIBs and SIBs, respectively. The result proves that the amorphous SeP2/C composite can be a new type of anode material with great potential for lithium and sodium-ion batteries.  相似文献   

6.
Single metal-organic coordination polymers have limited functions as precursors for porous carbon electrode materials.The construction of bimetallic organic coordination polymers can effectively utilize the advantages of each single metal-organic coordination polymer to improve the performance of the derived carbon materials.Herein,High performance nitrogen-doped porous carbon(BC_(Fe–Ni))have been produced by directly carbonizing bimetallic organic coordination polymers formed by 4,4'-bipyridine(BPD)reaction with Fe Cl_3and NiCl_2.The BC_(Fe–Ni) exhibits high nitrogen content(12.66 at%),large specific surface area(1049.51 m~2g~(-1))and hierarchical porous structure,which contributes to an excellent gravimetric specific gravity of 320.5 Fg~(-1)and 108%of specific capacitance retention after 10000 cycles.The BC_(Fe–Ni)assembled symmetrical supercapacitor shows an energy density of 18.3 Wh kg~(-1)at a power density of 350 W kg~(-1).It is expected that the as-prepared N-doped porous carbon derived from bimetallic-organic coordination polymer is a promising electrode material for high performance energy storage devices.  相似文献   

7.
High-capacity anode materials have stimulated much attention to developing high-performance lithium-ion batteries. However, high-capacity anode materials commonly suffer from the pulverization matter that greatly hinders their practical applications, especially in terms of the high proportion of active materials. In this work, a Ga2O3nanowire electrode is synthesized by thermal evaporation and immediately used as an anode without the aid of binders and conductive additives....  相似文献   

8.
Carbon-coated LiFePO4 hollow nanofibers as cathode materials for Li-ion batteries were obtained by coaxial electrospinning. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller specific surface area analysis, galvanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS) were employed to investigate the crystalline structure, morphology, and electrochemical performance of the as-prepared hollow nanofibers. The results indicate that the carbon-coated LiFePO4 hollow nanofibers have good long-term cycling performance and good rate capability: at a current density of 0.2C (1.0C = 170 mA·g-1) in the voltage range of 2.5–4.2 V, the cathode materials achieve an initial discharge specific capacity of 153.16 mAh·g-1 with a first charge–discharge coulombic efficiency of more than 97%, as well as a high capacity retention of 99% after 10 cycles; moreover, the materials can retain a specific capacity of 135.68 mAh·g-1, even at 2C.  相似文献   

9.
Co-substituted α-Ni(OH)2 was synthesized by a novel microwave homogeneous precipitation method in the presence of urea. LiNi0.8Co0.2O2 cathode material was synthesized by calcining Co-substituted α-Ni(OH)2 precursor and LiOH·H2O at 900℃for 10 h in flowing oxygen. XRD, FTIR, FESEM and electrochemical tests were used to study the physical and the electrochemical performances of the materials. The results show that the prepared LiNi0.8Co0.2O2 compound has a good layered hexagonal structure. Moreover, the LiNi0.8Co0.2O2cathode material demonstrates stable cyclability with a high initial specific discharge capacity of 183.9 mAh/g. The good electrochemical performance could be attributed to the uniform distribution of Ni^2+ and Co^2+ ions in the crystal structure and a minimal cation mixing in LiNi0.8Co0.2O2 host structure.  相似文献   

10.
以氢氧化锂、磷酸二氢铵和醋酸镍为原料,以聚乙二醇PEG-400为表面活性剂,采用前驱体固相活化法制备LiNiPO4纳米晶材料.固相制备过程的活化能E=81.08 kJ·mol-1,过程动力学为二维相界面扩散反应机理.前驱体生成LiNiPO4的反应符合界面反应指数成核机理,活化能E1=11.82 kJ·mol-1,指前因子lnA=13.82;LiNiPO4晶体生长过程具有较小的活化能E2=17.73 kJ·mol-1;Li3PO4转化反应和反应体系物系晶化过程符合二维相界面扩散反应机理,其是制备过程可控制的重要步骤.材料复合电极LiNiPO4+Nafion/C在0.5 mol·L-1H2SO4中具有典型的电容性能,电极比电容为214 F·g-1,经1 000次循环,电极电容量不但没有衰减反而略有增加,是潜在的电容器材料.  相似文献   

11.
1-x(Li2O–2P2O5)-xMnO2 glasses where x ?= ?0.2, 0.3 and 0.4 ?mol%, respectively, were synthesized by melted-quenching method. The Mn and P oxidation states and local structures around Mn and P-ions including Mn–O and P–O bonding distances and coordination numbers have been studied via X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), respectively. XANES results exhibit a coexistence of oxidation state of Mn2+ and Mn3+ with a mean value of 2.82. Moreover, Mn and P K-edge EXAFS show the Mn–O and P–O bonding distances of approximately 2.083–2.094 ?Å and 1.766–1.774 ?Å, respectively. A paramagnetism was found for all Mn–P glasses. Additionally, the coercive field (Hc) and remnant magnetization (Mr) increased with increasing Mn contents. However, the low specific capacitances are seriously obtained (<40 ?F ?g?1) suggesting the effect of natural diamagnetism of lithium phosphate based-glass unlike the borate based-glasses which originally exhibit paramagnetism.  相似文献   

12.
Li_2MnSiO_4-based cathode materials possess reasonable work potentials and high theoretical capacities,while the practical energy/power densities are constrained by their inferior kinetics of Li~+ diffusion.In this work,the Pmn2_1-structure Li_2Fe_xMn_(1-x)SiO_4/C materials were synthesized via a solvothermal method and evaluated as Liion cathode materials,with notable morphological evolutions and tunable crystallographic habits observed after solvothermal process.The Li_2Fe_(0.33)Mn_(0.67)SiO_4/C material delivers an initial reversible capacity of 250.2mAh g~(-1)at 0.1 C(~1.51 Li~+insertion/extraction,1 C=166 mA g~(-1)),excellent high-rate capability(52.2 mAh g~(-1)at 5 C),and good long-term cyclability(64.6%after 196 cycles at 2 C).The enhanced electrochemical properties are attributed to the boosted ion/electron transports induced by preferred morphological and structural characteristics of Li_2Fe_(0.33)Mn_(0.67)SiO_4/C.  相似文献   

13.
Highly uniform and tight adhering of Fe3O4 particles on carbon fiber film (Fe3O4/CFF) is achieved through a simple in-situ thermal oxidation method. Particularly, 3D CFF with interconnected structure can shorten transfer path and buffer the volume expansion during charge-discharge cycling. Herein, the obtained Fe3O4/CFF anode exhibits a stable cycling performance and excellent high rate capability. The cell delivers a reversible capacity of 1 711 mAh·g–1 at a current density of 100 mA·g–1 after 100 cycles. Even at a high rate density of 2 A·g–1, the specific capacity also can maintain 1 034 mAh·g–1 after 100 cycles. The simplified fabrication is featured with low-cost and this binder-free perspective holds great potential in mass-production of high-performance metal oxide electrochemical devices.  相似文献   

14.
The manganese sulfide (MnS) has attracted more attention as anode material on energy storage and conversion field, owing to its high theoretical capacity (616 ​mA ​h ​g−1) and good electrochemical activity. However, low electronic conductivity and large volume expansion during charge-discharge processes have limited its further application. In order to address above mentioned problems, the composites, MnS nanoparticles embedded in N,S-codoped porous carbon skeleton (named as MnS/N,S–C composites), herein have been prepared successfully using metal organic framework (Mn-NTA) as template. The porous carbon skeleton not only can enhance electrode conductivity, but also relieve volume expansion during charge-discharge processes. Thus, the rational design towards electrode architectures has endowed MnS/N,S–C nanocomposites with superior electrochemical performance, which delivers the specific capacities of 676.7 ​mA ​h ​g−1 at the current density of 100 ​mA ​g−1.  相似文献   

15.
采用水热法结合空气气氛中的热处理过程,在泡沫镍(NF)表面生长了锰酸钴(CoMn2O4)多级空心纳米球,通过X射线衍射仪(XRD)、场发射扫描电镜(FE-SEM)和X射线光电子能谱(XPS)等测试手段对纳米球进行了表征.在三电极电化学测量系统中,0.1Co2+-250电极材料在5 mA·cm-2时的面积比电容高达6 184 mF·cm-2.以0.1Co2+-250为正极,商用活性炭(AC)为负极组装而成的混合超级电容器,在1.6 mW·cm-2时的最大能量密度为0.112 mWh·cm-2.即使在功率密度为16 mW·cm-2时,能量密度仍达到0.064 mWh·cm-2.在2 mA·cm-2的电流密度下,经过10 000次充放电循环后,电容保持了初始值的93%.因其优越的电化学性能和低成本的便捷合成方法,CoMn2O4多级空心纳米球作为电极材料具有重要的应用前景.  相似文献   

16.
To more comprehensively analyze the effect of CO2 and H2O on the gasification dissolution reaction and deep reaction of coke, the reactions of coke with CO2 and H2O using high temperature gas-solid reaction apparatus over the range of 950-1250℃ were studied, and the thermodynamic and kinetic analyses were also performed. The results show that the average reaction rate of coke with H2O is about 1.3-6.5 times that with CO2 in the experimental temperature range. At the same temperature, the endothermic effect of coke with H2O is less than that with CO2. As the pressure increases, the gasification dissolution reaction of coke shifts to the high-temperature zone. The use of hydrogen-rich fuels is conducive to decreasing the energy consumed inside the blast furnace, and a corresponding high-pressure operation will help to suppress the gasification dissolution reaction of coke and reduce its deterioration. The interfacial chemical reaction is the main rate-limiting step over the experimental temperature range. The activation energies of the reaction of coke with CO2 and H2O are 169.23 kJ·mol-1 and 87.13 kJ·mol-1, respectively. Additionally, water vapor is more likely to diffuse into the coke interior at a lower temperature and thus aggravates the deterioration of coke in the middle upper part of blast furnace.  相似文献   

17.
The application of magnesium hydride(MgH_2) is limited due to the high reaction temperature and slow kinetics during dehydrogenation. In order to ameliorate the dehydrogenation property of MgH_2, MgC_(0.5)Co_3 compound with induction and catalytic effects was introduced into the Mg/MgH_2 system via ball-milling and hydriding combustion methods in present study. Compared to the pure MgH_2,the initial hydrogen desorption temperature of MgH_2–MgC_(0.5)Co_3 composite lowered to 237°C, decreasing by 141°C. At 325°C the MgH_2–MgC_(0.5)Co_3 composite could release 4.38 wt% H_2 within 60 min, which is 4.5 times the capacity of hydrogen released by as milled-MgH_2. Besides, the hydrogen desorption activation energy of the MgH_2–MgC_(0.5)Co_3 composite was dramatically reduced to 126.7 ± 1.4 k J/mol. It was observed that MgC_(0.5)Co_3 was chemically stable and no chemical transformation occurred after cycling, which not only inhibited the nucleation and growth of composite particles, but also had a positive effect on the hydrogen desorption reaction of MgH_2 due to its catalytic effect.This study may provide references for designing and synthesizing Mg–C–Co alloy compound for the Mg-based hydrogen storage area.  相似文献   

18.
The microstructure and hydrogen absorption-desorption characteristic of (Ti0.85Zr0.15)1.1Cr1-xMoxMn (x ?= ?0.05, 0.1, 0.15, 0.2 ?at.%) alloys were investigated. The results showed that the corresponding alloys were determined as a single phase of C14-type Laves structure. With the increase of Mo content, the maximum and reversible hydrogen absorption capacity decreased, the slope factor Hf increased. Among the studied alloys, (Ti0.85Zr0.15)1.1Cr0.95Mo0.05Mn had the best overall properties for practical application of hydrogen storage materials. The maximum and reversible hydrogen storage capacity were 1.76 ?wt% and 1.09 ?wt%, the slope factor Hf was 0.51, and its dissociation enthalpy (ΔHd) and entropy change (ΔSd) were 23.1 ?kJ ?mol?1H2, 93.8J ?K?1mol?1H2 at 303K, respectively. By studying the dissociation pressures of the synthesized metal hydrides, it was found that Mo had a special effect on the dissociation pressure of Ti–Zr–Cr–Mo–Mn alloys. Among the four alloys, (Ti0.85Zr0.15)1.1Cr0.95Mo0.05Mn alloy had the largest hydrogen absorption capacity and the fastest hydrogen desorption rate, which can meet the commercialization demand of hydrogen fuel cell hydrogen supply system.  相似文献   

19.
Bismuth-based materials are ideal electrodes for sodium-ion batteries(SIBs) due to their high capacity and low cost. However, conventional solid bismuth materials still suffer from severe volume expansion during the reaction process, which hinders its application. Herein, single-crystal bismuth nanospheres with diameters in the range of200–400 nm were successfully prepared with the Na–Bi alloying mechanism studied using in-situ XRD, which confirms a stepwise process of Bi→NaBi→Na3Bi with large v...  相似文献   

20.
The poor cycling stability of antimony during a repeated sodium ion insertion and desertion process is the key issue, which leads to an unsatisfactory application as an anode material in a sodium-ion battery. Addressed at this, we report a facile two-step method to coat antimony nanoparticles with an ultrathin carbon layer of few nanometers (denoted Sb@C NPs) for sodium-ion battery anode application. This carbon layer could buffer the volume change of antimony in the charge-discharge process and improve the battery cycle performance. Meanwhile, this carbon coating could also enhance the interfacial stability by firmly connecting the sodium alginate binders through its oxygen-rich surface. Benefitted from these advantages, an improved initial discharge capacity (788.5?mA?h?g?1) and cycling stability capacity (553?mA?h?g?1 after 50 times cycle) have been obtained in a battery using Sb@C NPs as anode materials at 50?mA?g?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号