首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 453 毫秒
1.
高分子有机太阳能电池因为其简单的制作工艺和轻便稳定的特性而引起人们的广泛研究。控制活性层的形貌对于提高有机太阳能电池的光电性能有着至关重要的意义。使用两种不同的混合溶剂(氯仿/1,8-二碘代辛烷和氯苯/1,8-二碘代辛烷)来制备PTB7-Th:PC_(70)BM活性层。发现使用氯苯/1,8-二碘代辛烷能使活性层获得更好的相分离效果,从而有利于光的吸收和电荷的分离。相对于氯仿/1,8-二碘代辛烷,使用氯苯/1,8-二碘代辛烷的太阳能电池的光电转化效率从7.21%大幅提高到了8.86%。这主要来自短路电流密度(从15.1 mA/cm~(-2)提高至16.7 mA/cm~2)和填充因子(从61.2%提高至66.3%)的提高。结果表明使用氯苯/1,8-二碘代辛烷作为混合溶剂有利于制备高性能的基于PTB7-Th:PC_(70)BM的有机太阳能电池。  相似文献   

2.
以P3HT为电子给体,PC_(71)BM为电子受体,制备聚合物太阳能电池.通过溶剂退火工艺,器件的能量转换效率从0.71%提高到3.33%,然后经过热退火工艺处理活性层,器件的性能得到进一步提高,其中能量转换效率达到4.46%、短路电流为10.71 m A/cm~2、开路电压达到0.59 V、填充因子为70.6%,其结果可能是溶剂退火和热退火提高P3HT的结晶性造成的.  相似文献   

3.
使用宽带隙的p型氢化非晶硅碳(p-a-SiC:H)薄膜作为晶体硅异质结(SHJ)太阳能电池的窗口层,使用时域有限差分法(FDTD)模拟证明,p-a-SiC:H不仅能明显降低窗口层的短波寄生吸收损失,而且可以减少SHJ太阳能电池的反射损失,从而增强SHJ太阳能电池的光谱响应。实验结果也证明,使用优化的p-a-SiC:H窗口层可以提升SHJ太阳能电池的短路电流(Jsc)达1.4 mA/cm2,电池光电转化效率达到了21.8%。这主要是由于p-a-SiC:H低的寄生吸收以及使用p-a-SiC:H窗口层降低了SHJ太阳能电池的反射损失所致。  相似文献   

4.
有机太阳能电池的异质结界面是影响其性能的一个重要因素.以氧化锌/碳酸铯作为双电子传输层,改善电子传输层与活性层的界面接触并提高电子传输能力.利用溶胶-凝胶法制备OSCs器件,通过优化的双电子传输层,使基于PTB7-Th:PC71BM的OSCs器件的最高效率达到了8.08%,其相较于ZnO电子传输层器件提高了10.68%.实验表明,由于ZnO/Cs2CO3 ETLs具有最佳的表面形貌和光吸收,其填充因子、短路电流密度和电子迁移率都显著提升.这种ZnO/Cs2CO3双电子传输层为OSCs性能改善提供了新的思路.  相似文献   

5.
以二(2-辛基十二烷氧基)苯并二噻吩(ODBDT)为供体单元,分别与受体单元二噻吩苯并噻二唑(DTBT)和二氟代二噻吩苯并噻二唑(DTffBT)共聚,合成了两种具有给-受体(D-A)结构的共轭聚合物PODBDT-DTBT和PODBDT-DTffBT。利用紫外-可见吸收光谱、循环伏安法研究了聚合物的光物理与电化学性能,并通过光伏性能测试研究了氟原子对聚合物太阳能电池的影响规律。结果表明,氟原子的引入使得聚合物的光学带隙变窄,溶解性变差;基于PODBDT-DTBT或PODBDT-DTffBT与PC71BM共混制备的本体异质结太阳能电池,光电转化效率分别为3.01%和2.00%。  相似文献   

6.
经过对P3HT/PCBM活性层薄膜退火,发现光的透射率增大,光的反射率减小.活性层的X射线衍射图谱分析表明,经过不同的退火时间,薄膜内结晶度不同,结果导致器件的量子效率有所不同.该器件在140℃的温度下,经过30 min退火,有机太阳能电池的短路电流达到0.75 mA/cm2,光电转化效率为0.034 64%,比较其他退火时间,该工序能量转换效率最高.  相似文献   

7.
以纯柠檬酸为碳源,分别使用十六胺(HAD)和4,7,10-三氧-1,13-十三烷二胺作为碳量子点表面钝化剂,采用一步合成法合成油溶性及水溶性2种碳量子点,以此为染料制备出染料敏化太阳能电池,研究了其光电性能和电化学阻抗谱.该电池采用光阳极-电解质-光阴极(对电极)结构.光阳极采用TiO2纳米颗粒多孔薄膜结构,电解质为常用I-/I3-电解质体系,光阴极为Pt薄膜电极.测试结果表明:在AM 1.5G标准太阳光照下,油溶性碳量子点敏化太阳能电池的短路光电流为0.515 mA/cm2,开路光电压为0.461 V,填充因子为63.17%,转化效率为0.15%;水溶性碳量子点敏化太阳能电池的短路光电流为0.598 mA/cm2,开路光电压为0.549 V,填充因子为65.59%,转化效率为0.22%.数值均优于已报道的文献.  相似文献   

8.
活性层的表面形态对有机异质结太阳能电池的光电转换至关重要。在实验过程中,为了能够获得较佳的表面形态和提高电池的转换效率,需要将活性层材料均匀的溶解在有机溶剂中。分别试验了以氯苯(CB)、邻二氯苯(O-DCB)及这两种溶剂按照1∶3的体积比例混溶物作为溶剂来进行旋涂制作薄膜太阳能电池。通过对比这三种不同溶剂所制成的电池的活性层的表面形态、吸收曲线,以及伏安曲线发现,氯苯和二氯苯互溶物组的产物性能明显优于单纯的氯苯组和邻二氯苯组。分析认为,在混溶物组两种溶剂的存在,使得P3HT和PCBM之间形成了明显的相分离从而提高了激子的分离效率致使产生更多的载流子,因而会产生明显的光电转换效率。  相似文献   

9.
有效提高太阳能电池对光的吸收效率是提高太阳能电池能量转换效率的重要因素.在以poly(3-hexylthiophene)(P3HT)为电子给体材料,[6,6]-phenyl C60-butyric acid methyl eater(PCBM)为电子受体材料的有机太阳能电池中,Poly-(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)与活性层之间插入不同厚度的P3HT层,并在P3HT层最佳厚度的基础上,进一步在活性层中掺杂不同比例的Ag纳米粒子,双重优化了电池器件.当插入45 nm的P3HT层及掺杂质量比为5%的Ag纳米粒子时活性层薄膜的形貌及内部结构得到了改善,电池对光的吸收,及外量子效率得到了显著地提高,并出现红移现象.在25°C,光强为100 mW/cm2的条件下测量其短路电流密度JSC为11.21 mA/cm2,能量转化效率PCE为3.79%.  相似文献   

10.
为提高有机太阳能电池的能量转换效率,提出一种基于双阳极界面修饰层的有机太阳能电池优化方案。该方法主要采用四氟乙烯( PTFE: Polytetrafluoroethylene) 和五氧化二钒( V2O5: Vanadiumpentoxide) 作为阳极界面修饰层,制备了器件结构为ITO/PTFE/V2O5 /PCDTBT ∶ PC71 BM/LiF/Al 的有机太阳能电池。测试结果表明,引入PTFE/V2O5双阳极界面修饰层的有机太阳能电池的能量转化效率最高可达6. 52%。相比于V2O5单阳极界面修饰层器件效率提高了11. 5%。测试结果证明双阳极界面修饰层的功函数与PCDTBT 材料的HOMO 能级更加匹配,有利于空穴的传输和提取。同时PTFE/V2O5 改善了氧化铟锡( ITO) 表面形貌,减少界面缺陷,抑制了界面处载流子的复合。  相似文献   

11.
Organic polymer solar materials are shown to exhibit better solubility in mixed solvents than in pure ones,which affects the performance of their solar cells.In this article,poly[N-9-hepta-decanyl-2,7-carbazole-alt-5,5-(4.7-di-2-thienyI-2,l,3-benzothiadiazole)(PCDTBT0)and[6,6]-phenyl-C71-butyric acid methyl ester(PC_(71)BM)are used as active layer materials in solar cells.To optimize the performance of these active materials,the ratio of chloroform(CF)to chlorobenzene used as solvents to dissolve PCDTBT,and PC_(71)BM is varied,which is shown to affect power conversion efficiency(PCE).The solar cell that shows the best performance with a PCE as high as 6.82%is produced using a volume ratio of CF to chlorobenzene of1:1.  相似文献   

12.
A series of polymer solar cells (PSCs) based on poly (diketopyrrolopyrrole-terthiophene) (PDPP3T) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as active layer were fabricated to investigate the effect of 1,8- diiodooctane (DIO) on the performance of PSCs. The power conversion efficiency (PCE) of PSCs was increased from 3.77 % to 4.37 % for the cells with DIO additive. The underlying reason may be attributed to that DIO additive could make PC71BM more dispersive in the active layer, forming a better bicontinuous interpenetrating network for excition dissociation and charge carrier transport. There- fore, the short circuit current density (Jsc) and fill factor (FF) was increased from 8.25 to 9.18 mA/cm2 and from 67.2 % to 70.0 % for the PSCs with DIO additive compared with PSCs without DIO additive.  相似文献   

13.
有机场效应晶体管的研究与应用进展   总被引:1,自引:0,他引:1  
有机场效应晶体管(Organic Field Effect Transistors,OFETs)是以有机半导体材料作为有源层的晶体管器件。和传统的无机半导体器件相比,由于其可应用于生产大面积柔性设备而被人们广泛的研究,在有机发光、有机光探测器、有机太阳能电池、压力传感器、有机存储设备、柔性平板显示、电子纸等众多领域具有潜在而广泛的应用前景。文中对OFET结构和工作原理做了简要介绍,之后重点讨论了最近几年来OFET中有机材料和绝缘体材料的发展状况,接着总结了OFET制备技术及其应用新领域,最后对OFET发展面临问题及应用前景做了归纳和展望。  相似文献   

14.
为了得到一种新型高效的聚合物太阳能电池材料,通过Stille聚合反应合成了一种以噻唑并噻唑为电子受体单元和硅基联噻吩为电子给体单元的交替共轭聚合物(PTTz-Si)。这种聚合物具有较窄的光学带隙(1.77 eV)、较高的热稳定性以及比较宽泛的紫外可见吸收光谱,其良好的溶解性保证了可以通过溶液加工制备成有机太阳能电池器件,是一种潜在的聚合物太阳能电池活性层供体材料。通过核磁共振氢谱、碳谱、热重分析、紫外可见吸收光谱、凝胶渗透色谱和电化学等测试方法对该聚合物进行了表征,并且将聚合物与PC71 CM共混制备聚合物太阳能电池器件,获取0.76%的光电转化效率。  相似文献   

15.
近年来,基于CH_3NH_3PbX_3(X=Cl,Br,I)材料的钙钛矿太阳能电池发展迅速。控制钙钛矿电池中每一层的形貌对于提高电池性能的影响至关重要。使用溶剂退火的方法处理空穴传输层(spiro-OMeTAD),使其表面形貌更加平整均匀,从而改善了空穴传输层与金属电极的接触,减小了电阻,更加有利于电子的传输和收集。使用氯仿进行溶剂退火以后,钙钛矿电池光电转化效率从原来的11.3%提高到了13.1%。其中开路电压、短路电流密度、和填充因子均有大幅提高。电池的迟滞现象从原来的8.8%减小到1.5%。经过长时间测试,使用溶剂退火以后的电池稳定性也有明显改善。研究论证了溶剂退火处理空穴传输层对于制备高性能、低迟滞、更稳定的钙钛矿太阳能电池具有至关重要的作用。  相似文献   

16.
采用聚3-己基噻吩(P3HT)溶于不同溶剂作为光敏层制备光伏器件,器件结构为:ITO/PEDOT:PSS/P3HT/Al.我们分析了聚3-己基噻吩(P3HT)溶于不同溶剂制成的光敏层薄膜,并对光敏层薄膜的形貌通过原子力显微镜(AFM)进行了表征.研究发现,P3HT溶于氯苯的薄膜形貌最优,光伏特性最好,短路电流、开路电压都比溶于氯仿和二甲苯的高.  相似文献   

17.
制备了一种ITO/CuPc/CuPc∶C60/Alq/Al结构的PIN有机太阳能电池,采用Cu-phthalocyanine(CuPc)和fullerene(C60)的共混层作为光吸收层,CuPc和Alq作为空穴传输层和电子传输层.利用真空蒸发镀膜法制备各层有机薄膜,并用I-V曲线和紫外可见吸收光谱来表征器件性能.研究了器件的光吸收层、电子传输层、空穴传输层的膜厚参数对器件性能的影响.结果表明,当器件光吸收层、电子传输层、空穴传输层的厚度分别为15,30,40 nm时,器件的性能达到最优化.优化器件的短路电流密度JSC为2.07 mA.cm-2,开路电压VOC为0.56 V,填充因子FF为0.46,器件的能量转换效率达到0.53%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号