首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
郝朝旭  王雪东  何燕  慈海娜 《科学通报》2024,(14):1893-1905
石墨烯因其优异的物理/化学特性,在众多领域有着广泛的应用前景.为了推动石墨烯材料的实际应用,需要寻找稳定可靠、可扩展和低成本的石墨烯材料制备方法.等离子体增强化学气相沉积(plasma-enhanced chemical vapor deposition, PECVD)技术是一种借助外加能量辅助反应前驱体裂解产生等离子体,进而实现石墨烯制备的方法. PECVD技术在沿袭了传统化学气相沉积法工艺产物设计性强、反应途径灵活、可批量化、高品质制备石墨烯等优点的基础上,可以实现石墨烯在更低的生长温度、更多样化的生长衬底上以更快的生长速度制备合成,从而能够有效降低能耗,提高制备效率,拓展石墨烯的应用场景.本文综述了近年来利用不同等离子体源(射频、直流和微波)PECVD技术制备石墨烯的研究进展,讨论了其生长机理,以及PECVD制备石墨烯在储能、器件散热和光热转化等相关领域的应用,进一步对PECVD技术在石墨烯制备和应用中面临的挑战和未来的发展前景进行了总结.  相似文献   

2.
化学气相沉积(CVD)法作为合成石墨烯的主流方法之一,已在大面积、高质量石墨烯的可控制备领域获得了广泛应用.但由于生长基底形貌和生长过程动力学因素的影响,采用该方法获得的石墨烯一般是由小晶畴石墨烯拼接而成的多晶膜,晶畴之间的晶界会导致其物理化学性质与本征石墨烯有很大差别.完美的单晶内没有晶界,因此石墨烯单晶的性质与其理论预期接近,近年来石墨烯单晶的可控生长已成为一个重要的研究方向.石墨烯单晶的尺寸和形状是影响其性质的2个主要因素,此外,研究石墨烯单晶的大小及形状成因还有助于了解石墨烯单晶的生长机理.本文将介绍CVD法可控制备石墨烯单晶的一些代表性成果,探讨石墨烯单晶的大小和形状成因,简述石墨烯单晶在电子器件上的应用,展望石墨烯单晶可控生长的机遇与挑战.  相似文献   

3.
孙勇刚  曹安民 《科学通报》2019,64(34):3607-3622
基于自模板法构筑空心结构材料,可以摆脱对常规模板法的依赖,具有合成步骤简单、重现性高、生产成本低、结构可控性好以及易于大规模制备的优点,目前引起了研究者的广泛关注.本文从颗粒内部结构调控的角度出发,主要围绕热处理诱导实心颗粒的自发空心化、选择性刻蚀具有内外结构差异的实心颗粒这两种构筑空心结构的方法进行概述,介绍了不同类型材料的自模板构筑方法及结构控制机制,结合其在钠离子及钾离子电池中的应用,探讨了空心结构材料在电化学储能领域的应用潜力,并进一步展望了自模板法构筑空心结构的前景和发展趋势.  相似文献   

4.
胡兆宁  林立  刘忠范 《科学通报》2023,(26):3421-3424
<正>尽管石墨烯薄膜材料表现出优异的电学、光学等物理化学性质,但相较于石墨烯粉体材料,其商业化应用还远未成熟.基于化学气相沉积法,在金属衬底上生长石墨烯薄膜被认为是批量化制备大尺寸石墨烯薄膜的主流路线.其中,在平整的Cu(111)晶圆衬底上外延生长超平整石墨烯单晶晶圆薄膜,  相似文献   

5.
以铜作为基体的化学气相沉积法(CVD)是近年来发展起来的制备石墨烯的新方法,具有产物质量高、层数均一等优点,已成为制备大面积、单层石墨烯的主要方法.本文围绕铜表面CVD控制生长石墨烯,结合对石墨烯的结构和生长行为的初步认识,介绍了质量提高、层数控制以及无转移生长等控制制备方面的最新研究进展,并展望了该方法制备石墨烯的可能发展方向,包括大尺寸石墨烯单晶以及不同堆垛方式的双层石墨烯的控制生长等.  相似文献   

6.
《科学通报》2021,66(27):3617-3630
电极的结构设计是影响其反应动力学与离子传质能力,进而影响电化学储能系统性能的重要因素之一.为了追求较好的电极动力学以及传质速率,三维有序石墨烯基电极已吸引越来越多的研究兴趣.与其他类型的三维石墨烯结构不同,通过定向冷冻法、等离子体增强化学气相沉积法、KOH辅助水热法等制备的三维垂直定向石墨烯(3DVAG)具有垂直开放通道以及低孔隙弯曲度,可以有效增强离子的输运和电子的传导,提高活性物质的负载,从而实现电极材料的高能量密度及倍率性能.本文对三维垂直定向石墨烯的制备方法及其在超级电容器中的应用进行了综述,并对其未来的发展前景进行了展望.  相似文献   

7.
以化学气相沉积(CVD)法生长的石墨烯作为基体,采用原位复合方法制备出三维石墨烯/碳纳米管纳米复合材料.使用扫描电子显微镜(SEM)和透射电子显微镜(TEM)对复合材料的微观形貌和结构进行表征,并运用循环伏安、交流阻抗等技术对纳米复合材料的超级电容性能进行研究.实验结果表明,石墨烯/碳纳米管纳米复合材料作为超级电容器电极材料,在1.5 mol/L Li_2SO_4体系中的最大比电容为289.8 F/g,经2000次循环后,其容量保持92%,表现出优异的比容量和循环稳定性.  相似文献   

8.
李萌  毛丹  王丹 《科学通报》2019,64(34):3516-3525
中空多壳层结构材料因具有由外至内次序排列的多个壳层,赋予了材料独特的时空有序性,在电化学储能、太阳能转换、电磁波吸收、催化、气敏、药物释放等领域有着巨大的应用潜力.然而由于结构的复杂性,缺乏普适可控的合成方法成为制约该新型功能材料发展与应用的关键.次序模板法的发展,实现了中空多壳层结构材料的普适可控合成,促进了该领域的迅速发展.本文简单回顾了中空多壳层结构材料合成方法的发展历程,主要总结了次序模板法从提出到日益成熟的发展过程,深入分析了次序模板法的特点与适用范围,剖析了次序模板法促进中空多壳层结构材料迅速发展的原因,最后探讨了中空多壳层结构材料在可控合成上面临的挑战和未来的发展方向.  相似文献   

9.
回顾了石墨烯霍尔元件的现状,并展望了其应用前景.石墨烯霍尔元件能够充分发挥石墨烯材料迁移率高和单原子薄层等优势,规避其没有带隙或者小带隙的缺陷,其主要的性能包括灵敏度、线性度、分辨率、温度稳定性等都超过了基于传统半导体材料的霍尔元件,而且制备工艺简单,容易得到高性能的石墨烯磁敏传感器.基于化学气相沉积(CVD)生长并转移到绝缘基底上的石墨烯材料,批量制备出高质量性能均匀的石墨烯霍尔元件.通过低温的器件加工工艺,将石墨烯霍尔元件集成到硅基互补性金属氧化物半导体(CMOS)电路中,实现了高性能混合霍尔集成电路,展示了石墨烯霍尔元件与硅基CMOS集成电路良好的工艺兼容性.  相似文献   

10.
阚兰艳  郑冰娜  高超 《科学通报》2012,(22):2062-2065
石墨烯是一种具有二维纳米结构的材料,也是制备二维材料理想的模板.本文报道了一种以氧化石墨烯为模板制备二氧化硅纳米片的方法,利用原位自由基聚合将含硅聚合物聚(3-(异丁烯酰氧)丙基三甲氧基硅烷)接枝到氧化石墨烯片上,经过氨水交联、冻干和700℃下热处理,获得二氧化硅纳米片.  相似文献   

11.
人类当前面临越来越突出的能源短缺和环境恶化两大难题,新能源的开发具有极其重要意义.超级电容器是实现能源存储与转换的一种新兴绿色储能器件,具有非常广阔的应用前景.电极材料是储能器件的关键部件,而比表面积、孔结构、电导率和表面性质是决定其电化学性能的4个关键因素,上述因素通常又依赖于其合成方法和条件.多孔碳材料具有成本低廉、比表面积与电导率高、微结构可控/表面易于功能化以及优越的化学稳定性和突出的离子可及性等特点,通过合成方法和条件的调控,设计合成的多孔碳作为储能材料使用时展现出高的能量密度与功率密度,以及优越的电化学循环稳定性能.本文首先介绍目前活性碳、碳气凝胶、碳纤维、介孔碳、碳纳米管和石墨烯等多种形态的碳材料的研究进展;然后结合本研究组的研究工作,对分级孔碳、多孔碳球、超微孔碳、功能化多孔碳以及多孔碳复合材料的设计合成及其在能源存储与转换领域中的应用研究状况进行总结;最后对其发展趋势作出适当的评述.  相似文献   

12.
多壳层中空材料具有比表面积大、结构稳定的优点,其特有的中空形貌结构赋予了它优异的光、电、磁、热等性质,是近年来材料领域研究的热点之一.近年来,随着材料合成工艺与设备的发展,具有功能多样化的中空材料得到蓬勃发展.本文首先介绍了几类多壳层中空材料的合成方法,包括硬模板法、软模板法、无模板法(如奥斯瓦尔德熟化法、柯肯达尔效应法、离子交换法、选择性刻蚀法、热诱导迁移法、喷雾干燥法).然后,对不同形貌的多壳层中空材料进行了分类,并对其合成过程中的生长机制进行了归纳总结.最后,总结了多壳层中空材料在锂/钠二次电池、超级电容器、染料敏化太阳能电池、光催化、光解水等领域中的应用进展.  相似文献   

13.
石墨烯具有的各种优异性能使其在新材料领域具有十分广泛的应用前景,但如何批量低成本制备高质量的石墨烯是实现其大规模应用前亟待解决的问题.本文采用流体剪切辅助超临界CO2剥离法,以石墨粉为原料成功制备出高质量的石墨烯.运用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、原子力显微镜(AFM)及拉曼光谱等技术对所制得的石墨烯进行分析表征,发现得到的石墨烯具有完整的晶格结构及很高的导电率,其中1~10层石墨烯含量达到90%以上.本技术有望提供一种清洁、高效制备高质量石墨烯的方法.  相似文献   

14.
锂离子在石墨烯材料中的嵌入脱出机制   总被引:1,自引:0,他引:1  
采用还原氧化石墨法制备了石墨烯材料, 运用X 射线衍射(XRD)、原子力显微镜(AFM)、扫描电子显微镜(SEM)、充放电、循环伏安和电化学阻抗谱(EIS)等对其结构、表面形貌和电化学嵌锂性能进行了表征. XRD, SEM 和AFM 研究结果表明, 所制备的材料主要为层数少于10 层的石墨烯材料; 充放电结果表明, 石墨烯材料电极具有较高的可逆容量和较好的循环性能, 但也存在较大的首次不可逆容量, 不可逆容量主要归因于首次充放电过程中石墨烯材料表面固体电解质相界面膜(SEI 膜)的形成和充放电循环过程中石墨烯材料的自发堆叠. EIS 结果表明, 石墨烯材料电极表面SEI 膜主要在0.95~0.7 V 之间形成, 测得锂离子在石墨烯材料电极中电化学嵌入反应的对称因子α 为0.446.  相似文献   

15.
石墨烯由于独特的单原子层二维结构和高比表面积等优异性能而被用作选择性分离膜和吸附剂,在水处理领域具有潜在的应用前景.本文综述了石墨烯纳米多孔膜和层状堆叠的氧化石墨烯渗透膜对气体、水及离子的传质行为.纳米多孔膜因其制备技术和不成熟的打孔技术等原因而具有一定局限性;而层状渗透膜由于制备方法简单、成本低、高通透性和高选择性等优点,在水净化领域具有广阔的应用空间.进一步综述了石墨烯吸附材料对水中重金属离子、染料和有机污染物的吸附行为,分析了石墨烯材料表面官能团与污染物的相互作用机理.最后展望了石墨烯材料在膜分离、海水淡化和污染物去除等环境应用中的机遇和挑战.  相似文献   

16.
微生物作为一种生物质资源不仅具有种类繁多、生物量巨大、易于再生且廉价易得的特点,而且微生物本身就具有高度复杂的微/纳米构造和丰富的功能基团,经过修饰和处理就可以得到结构和功能多样的微/纳米材料.微生物自模板法直接利用微生物天然的球形构造并以其自身物质为主要原料经过一定的处理形成多孔中空微球,具有无需制备模板、反应步骤少和化学试剂消耗量低等优点,与传统的软、硬模板法相比有了较大的进步.本文将利用微生物自模板法制备多孔中空微球的主要合成方法归纳为:溶剂顺序抽提法、高温碳化法和水热碳化法.微生物通过上述3种方法并结合表面修饰可以得到组成丰富、功能多样的多孔中空微球,使其在活性物质封装、控释给药、核磁成像、电极材料、催化及环境等领域有着广泛的应用.在高度重视环境保护和强调可持续发展的当今时代,发展微生物自模板法制备多孔中空微球有着更为深远的现实意义.  相似文献   

17.
金曾孙 《科学通报》1989,34(21):1619-1619
金刚石不仅是最好的超硬耐磨材料,而且是一种新型的功能薄膜材料,具有优异的电学,光学、热学和力学性质。 1976年Derjaguin等用化学输运反应方法在非金刚石基板上首先合成出金刚石,1982年Matsumoto等用热灯丝化学气相沉积法(CVD),1983年Kamo等用微波等离子体化学气相沉积方法在硅等基板上制备出金刚石薄膜。近年来,金刚石薄膜的研究得到迅速发展,建立了各种制备方法和制备技术,在各种基板材料上合成出大面积均匀的金刚石膜,而且在应用研究方面取得了有意义的结果。  相似文献   

18.
石墨烯——最薄的二维碳材料,因其具有卓越的机械、光学、电子和热性能,使其在复合材料、电子器件、能源储存和吸附分离等许多领域都具有广泛的应用.石墨烯筛(graphene nanomesh)作为一种在石墨烯片层引入纳米孔的多孔石墨烯,除了具有石墨烯本身固有的特性之外,其可调控的孔结构设计为石墨烯筛功能性应用提供了新的选择.本文综述了常见的石墨烯筛合成方法并展望了其未来发展前景.  相似文献   

19.
金刚石膜的生长特性及界面结构研究   总被引:1,自引:1,他引:0  
于三 《科学通报》1991,36(3):182-182
众所周知,金刚石具有优异的电学、热学及机械特性,气相合成金刚石方法作为一种新的金刚石合成技术具有广阔的发展前景。目前用各种化学气相沉积(CVD)方法已合成出了具有不同用途的金刚石膜。随着气相合成金刚石薄膜制备与应用研究的发展,人们在气相合成金刚石薄膜的机理研究和物性研究方面作了许多工作,其中Williams等人对微波CVD  相似文献   

20.
石墨烯作为一种拥有优异性能的二维晶体材料,其制备方法与潜在应用在最近几年内得到了广泛研究.与现有半导体硅工艺相匹配的化学气相沉积方法因其能够以低成本大规模制备高质量石墨烯,逐渐成为工业化大规模制备石墨烯的首选技术.然而,金属上通过化学气相沉积生长的石墨烯需要转移到绝缘衬底上才可以用于器件制备、电学性能表征等后期工作,而目前的转移技术无法避免对石墨烯的质量造成影响.如果在绝缘衬底表面直接生长石墨烯将有效避免石墨烯的转移工艺,从而有望在目标绝缘衬底上直接获得大面积高质量石墨烯.本文系统性介绍了近几年来绝缘衬底上生长石墨烯的相关研究进展,总结并展望了绝缘衬底上石墨烯生长、应用的发展前景与需要攻克的难题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号