首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G(V,E)是一个简单图,k是一个正整数,f是一个V(G)∪E(G)到{1,2,…,k}的映射,如果uv∈E(G),则f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v),其中,C(u)={f(u)}∪{f(uv)|uv∈E(G)},称f是图G的邻点可区别E-全染色,称最小的数k为图G的邻点可区别E-全色数,给出了奇圈、偶圈与轮的多重联图的邻点可区别E-全色数.  相似文献   

2.
G(V,E)是一个简单图,k是一个正整数,f是一个V(G)∪E(G)到{1,2,…,k}的映射,如果(A)uv∈E(G),则f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v),其中,C(u)={f(u)}∪{f(uv)|uvEE(G)},称f是图G的邻点可区别E-全染色,称最小的数k为图G的邻点可区别E-全色数,给出了奇圈、偶圈与轮的多重联图的邻点可区别E-全色数.  相似文献   

3.
G(V,E)是一个简单图,k是一个正整数,f是V(G)∪E(G)到{1,2,…,k}的一个映射.如果uv∈E(G),则f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v),其中C(u)={f(u)}∪{f(uv)|uv∈E(G)}.称 f是图G的邻点可区别E-全染色,称最小的数k为图G的邻点可区别E-全色数.得到路和圈的联图的邻点可区别E-全色数.  相似文献   

4.
G(V,E)是一个简单图,k是一个正整数,f是一个V(G)∪ E(G)到{1,2,…,k}的一个映射.如果(A)u,v∈V(G),则f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v),其中C(u)={f(u)}∪{f(uv)∣u,v∈E(G)},称f是图G的邻点可区别E-全染色,称最小的数k为图G的邻点可区别E-全染数.文章讨论了扇与轮、完全图的多重联图的邻点可区别E-全色数.  相似文献   

5.
对简单图G(V,E),存在一个正整数k,使得映射f:V(G)∪E(G)→{1,2,…,k},如果对uv∈E(G),有f(u)≠f(uv),f(v)≠f(uv),且C(u)≠C(v),则称f是图G的邻点可区别VE-全染色,且称最小的数k为图G的邻点可区别VE-全色数.讨论一些图的图笛卡儿积图的邻点可区别VE-全染色,得到它们的邻点可区别VE-全色数.  相似文献   

6.
设G(V,E)是阶数至少为2的简单连通图,k是正整数,V∪E到{1,2,3,…,k}的映射f满足:对任意uv,vw∈E(G),u≠w,有f(uv)≠f(vw);对任意uv∈E(G),有f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv);那么称f为G的k-正常全染色,若f还满足对任意uv∈E(G),有C(u)≠C(v),其中C(u)={f(u)}∪{f(uv)|uv∈E(G),v∈V(G)},那么称f为G的k-邻点可区别的全染色(简记为k-AVDTC),称min{k|G有k-邻点可区别的全染色}为G的邻点可区别的全色数,记作Xat(G).本文得到了圈Cm和完全图Kn的笛卡尔积图Cm×Kn邻点可区别的全色数.  相似文献   

7.
对简单连通图G(V,E),存在一个正整数k,和映射f:V(G)∪E(G)→{1,2,…,k},使得对uv∈E(G),有f(u)≠f(uv),f(v)≠f(uv),且C(u)≠C(v),则称f是图G的邻点可区别VE-全染色,而χvate(G)=min{k|k-AVD-VETC},称为G的邻点可区别VE-全色数,其中色集合C(u)={f(u)}∪{f(uv)|uv∈E(G)}.给出圈的倍图D(Cm)和扇的倍图D(Fm)的邻点可区别VE-边全色数.  相似文献   

8.
对简单图G(V,E),f是从V(G)∪E(G)到{1,2,…,k}的映射,k是自然数,若f满足:(1)uv∈E(G),u≠v,f(u)≠f(v);(2)uv,uw∈E(G),v≠w,f(uv)≠f(uw);(3)uv∈E(G),C(u)≠C(v);其中C(u)={f(u)}∪{f(uv)uv∈E(G)}.则称f是G的一个关联邻点可区别全染色,所需的最少颜色数称为图G的关联邻点可区别全色数.给出了路、圈、星、扇、轮倍图的关联邻点可区别全色数.  相似文献   

9.
图G的I-全染色是指对图G的顶点和边染色,使得任意两个相邻的点的颜色不同,任意两条相邻的边的颜色不同.图G的一个I-全染色称为是邻点可区别的,如果任意两个相邻顶点u,v的色集合C(u)≠C(v),这里C(u)={f(u)}∪{f(uv)|uv∈E(G)}.而图G的邻点可区别I-全染色中所用的最少色数称为图G的邻点可区别I-全色数.讨论路与扇的联图Pm∨Fn、路与轮联图Pm∨Wn的邻点可区别I-全染色问题,根据这类图的结构性质运用色构造法给出它们的邻点可区别I-全染色方法,从而有效地确定其邻点可区别I-全色数.  相似文献   

10.
对简单图G(V,E),f是从V(G)∪E(G)到{1,2,...,k}的映射,k是自然数,若f满足(1)uv∈E(G),u≠v,f(u)≠f(v);(2)uv,uw∈E(G),v≠w,f(uv)≠f(uw);(3)uv∈E(G),C(u)≠C(v);其中C(u)={f(u)}∪{f(uv)|uv∈E(G)};则称f是G的一个关联邻点可区别全染色.给出了一类3-正则重圈图Re(n,m)(m≥2,n≥3且n≡0(mod2))的关联邻点可区别全色数.  相似文献   

11.
设f为用k色时G的正常全染色法,对任意的边uv∈E(G),其端点的色集合满足C(u)≠C(v),其中C(u)={f(u)}∪{f(v)|uv∈E(G)}∪{f(uv)|uv∈E(G)},则称f是G的k邻点强可区别的全染色法(简记作k-AVSDTC),且称χast(G)=min{k|G的所有k-AVSDTC}为G的邻点强可区别全色数.本文得到D(pn)图的邻点强可区别全色数,其中pn为n阶路.  相似文献   

12.
关于几类特殊图的Mycielski图的邻点可区别全色数   总被引:8,自引:6,他引:2  
设G是一个简单图,f是一个从V(G)∪ E(G)到{1,2,…,k}的映射.对每个v∈V(G),令Cf(v)={f(v)}∪{f(vw)|w∈V(G),vw∈E(G)}.如果f是G的正常全染色且u,v∈V(G),一旦uv∈E(G),就有Cf(u)≠Cf(v),那么称f为G的邻点可区别全染色(简称为k-AVDTC).设xat(G)=min{k|G存在k-AVDTC},则称xat(G)为G的邻点可区别全色数.给出了路、圈、完全图、完全二分图、星、扇和轮的Mycielski图的邻点可区别全色数.  相似文献   

13.
设G(V,E)为阶数至少是3的简单连通图,若f是图G的k-正常边染色,使得对任意的uv∈E(G),C(u)≠C(v),那么称f是图G的k-邻点可区别边染色(k-ASEC),其中C(u)={f(uw)|uw∈E(G)},而aχs′(G)=min{k|存在G的一个k-ASEC},称为G的邻点可区别边色数.给出多重联图Sm∨Pn∨Pn的邻点可区别边色数.  相似文献   

14.
G是一个简单图,G的一个IE全染色f是一个映射,该映射满足:对u,v∈V(G),u≠v,有C(u)≠C(v).图G的一个点可区别IE-全染色f是指一个从V(G)∪E(G)到{1,2,…,k}的映射,且满足:对uv∈E(G),有f(u)≠f(v);对u,v∈V(G),u≠v,有C(u)≠C(v),其中C(u)={f(u)}∪{f(uv):uv∈E(G)},简称k-VDIET.数min{k:G有一个k-VDIET染色}称为图G的点可区别IE-全色数或简称VDIET色数,记为χievt(G).本文讨论并给出了完全二部图K9,n的点可区别IE-全色数.  相似文献   

15.
设G是简单图,f 是从V(G)∪E(G) 到{1,2,…,k}的一个映射.对每个u∈V(G),令C(u)={f(u)}∪{f(uv)|v∈V(G),uv∈E(G)}.如果f是k-正常全染色,且对任意u,v∈V(G),有C(u)≠C(v),那么称f为图G的点可区别全染色(简称为k-VDTC).数χv t(G)=min{k|G有k-VDTC}称为图G的点可区别全色数.给出m阶路Pm和n 1阶星Sn的联图的点可区别全色数.  相似文献   

16.
设G(V,E)是阶数至少是2的简单连通图,k是正整数,若f是从V(G)∪E(G)到{1,2,…,k}的一个映射,使得:对于任意的uv,vw∈E(G),u≠w,有f(uv)≠f(vw);且对于任意的uv∈E(G),u≠v,有f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),则称f为G的一个k-全染色(简记成k-TC of G).而χt(G)=min{k|k-TC of G},称为G的全色数.设G和H是点边都不相交的简单图,V(G∨H)=V(G)∪V(H),E(G∨H)=E(G)∪E(H)∪{uv|u∈V(G),v∈V(H)},则称G∨H是G与H的联图.给出m 1阶星和n 1阶扇的联图的全色数.  相似文献   

17.
设f为用k色时G的正常全染色法,对任意的边uv∈E(G),其端点的色集合满足C(u)≠C(v),其中C(u={f(u))U{f(v)|uv∈E(G))U{f(uv)}uv∈E(G)),则称,是G的k邻点强可区别的全染色法(简记作k-AVSDTC),且称xast(G)=min{k}G的所有k-AVSDTC}为G的邻点强可区别全色数.本文得到D(pn)图的邻点强可区别全色数,其中pn为n阶路.  相似文献   

18.
设G是具有顶点集V(G)和边集E(G)的简单图。如果G的一正常边染色σ满足对任意uv∈E(G),有Cσ(u)≠Cσ(v),其中Cσ(u)为点u的关联边所染颜色构成的集合,则称σ为G的邻点可区别边染色。如果G的一正常全染色σ满足对任意uv∈E(G),有Sσ(u)≠Sσ(v),其中Sσ(u)表示点u及u的关联边所染颜色构成的集合,则称σ为G的邻点可区别全染色。图G的邻点可区别边(或全)染色所需的最少的颜色数,称为G的邻点可区别边(或全)色数,并记为χ’as(G)(或χat(G))。给出了图G的倍图D(G)的以上两个参数的上界,并对完全图与树,确定了它们的倍图的邻点可区别边色数与全色数的精确值。  相似文献   

19.
对简单图G(V,E),设f是从E(G)到{1,2,…,k}的映射,k为自然数,如果f满足:1)对任意的uv,uw∈E(G),v≠w,有f(uv)≠f(uw);2)对任意的u,v∈V(G),u≠v,有C(u)≠C(v).则称f为图G的k-点可区别边染色法,而最小的k被称为点可区别边色数(其中C(u)={f(uv)|uv∈E(G)}).研究了图K2n\E(Fm)(n≥4,m≥2)的点可区别边色数.  相似文献   

20.
对简单图G(V,E),设f是从E(G)到{1,2,…,k}的映射,k为自然数,如果f满足:1)对任意的uv,uw∈E(G),v≠w,有f(uv)≠f(uw);2)对任意的u,v∈V(G),u≠v,有C(u)≠C(v).则称f为图G的k-点可区别边染色法,而最小的k被称为点可区别边色数(其中C(u)={f(uv)|uv∈E(G)}).研究了图K2n\E(F5)(n≥13)的点可区别边色数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号