首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mao B  Wu W  Davidson G  Marhold J  Li M  Mechler BM  Delius H  Hoppe D  Stannek P  Walter C  Glinka A  Niehrs C 《Nature》2002,417(6889):664-667
The Wnt family of secreted glycoproteins mediate cell cell interactions during cell growth and differentiation in both embryos and adults. Canonical Wnt signalling by way of the beta-catenin pathway is transduced by two receptor families. Frizzled proteins and lipoprotein-receptor-related proteins 5 and 6 (LRP5/6) bind Wnts and transmit their signal by stabilizing intracellular beta-catenin. Wnt/beta-catenin signalling is inhibited by the secreted protein Dickkopf1 (Dkk1), a member of a multigene family, which induces head formation in amphibian embryos. Dkk1 has been shown to inhibit Wnt signalling by binding to and antagonizing LRP5/6. Here we show that the transmembrane proteins Kremen1 and Kremen2 are high-affinity Dkk1 receptors that functionally cooperate with Dkk1 to block Wnt/beta-catenin signalling. Kremen2 forms a ternary complex with Dkk1 and LRP6, and induces rapid endocytosis and removal of the Wnt receptor LRP6 from the plasma membrane. The results indicate that Kremen1 and Kremen2 are components of a membrane complex modulating canonical Wnt signalling through LRP6 in vertebrates.  相似文献   

2.
LDL-receptor-related proteins in Wnt signal transduction   总被引:58,自引:0,他引:58  
Tamai K  Semenov M  Kato Y  Spokony R  Liu C  Katsuyama Y  Hess F  Saint-Jeannet JP  He X 《Nature》2000,407(6803):530-535
The Wnt family of secreted signalling molecules are essential in embryo development and tumour formation. The Frizzled (Fz) family of serpentine receptors function as Wnt receptors, but how Fz proteins transduce signalling is not understood. In Drosophila, arrow phenocopies the wingless (DWnt-1) phenotype, and encodes a transmembrane protein that is homologous to two members of the mammalian low-density lipoprotein receptor (LDLR)-related protein (LRP) family, LRP5 and LRP6 (refs 12-15). Here we report that LRP6 functions as a co-receptor for Wnt signal transduction. In Xenopus embryos, LRP6 activated Wnt-Fz signalling, and induced Wnt responsive genes, dorsal axis duplication and neural crest formation. An LRP6 mutant lacking the carboxyl intracellular domain blocked signalling by Wnt or Wnt-Fz, but not by Dishevelled or beta-catenin, and inhibited neural crest development. The extracellular domain of LRP6 bound Wnt-1 and associated with Fz in a Wnt-dependent manner. Our results indicate that LRP6 may be a component of the Wnt receptor complex.  相似文献   

3.
LDL-receptor-related protein 6 is a receptor for Dickkopf proteins   总被引:42,自引:0,他引:42  
Mao B  Wu W  Li Y  Hoppe D  Stannek P  Glinka A  Niehrs C 《Nature》2001,411(6835):321-325
Wnt glycoproteins have been implicated in diverse processes during embryonic patterning in metazoa. They signal through frizzled-type seven-transmembrane-domain receptors to stabilize beta-catenin. Wnt signalling is antagonized by the extracellular Wnt inhibitor dickkopf1 (dkk1), which is a member of a multigene family. dkk1 was initially identified as a head inducer in Xenopus embryos but the mechanism by which it blocks Wnt signalling is unknown. LDL-receptor-related protein 6 (LRP6) is required during Wnt/beta-catenin signalling in Drosophila, Xenopus and mouse, possibly acting as a co-receptor for Wnt. Here we show that LRP6 (ref. 7) is a specific, high-affinity receptor for Dkk1 and Dkk2. Dkk1 blocks LRP6-mediated Wnt/beta-catenin signalling by interacting with domains that are distinct from those required for Wnt/Frizzled interaction. dkk1 and LRP6 interact antagonistically during embryonic head induction in Xenopus where LRP6 promotes the posteriorizing role of Wnt/beta-catenin signalling. Thus, DKKs inhibit Wnt co-receptor function, exemplifying the modulation of LRP signalling by antagonists.  相似文献   

4.
Davidson G  Wu W  Shen J  Bilic J  Fenger U  Stannek P  Glinka A  Niehrs C 《Nature》2005,438(7069):867-872
Signalling by Wnt proteins (Wingless in Drosophila) has diverse roles during embryonic development and in adults, and is implicated in human diseases, including cancer. LDL-receptor-related proteins 5 and 6 (LRP5 and LRP6; Arrow in Drosophila) are key receptors required for transmission of Wnt/beta-catenin signalling in metazoa. Although the role of these receptors in Wnt signalling is well established, their coupling with the cytoplasmic signalling apparatus remains poorly defined. Using a protein modification screen for regulators of LRP6, we describe the identification of Xenopus Casein kinase 1 gamma (CK1gamma), a membrane-bound member of the CK1 family. Gain-of-function and loss-of-function experiments show that CK1gamma is both necessary and sufficient to transduce LRP6 signalling in vertebrates and Drosophila cells. In Xenopus embryos, CK1gamma is required during anterio-posterior patterning to promote posteriorizing Wnt/beta-catenin signalling. CK1gamma is associated with LRP6, which has multiple, modular CK1 phosphorylation sites. Wnt treatment induces the rapid CK1gamma-mediated phosphorylation of these sites within LRP6, which, in turn, promotes the recruitment of the scaffold protein Axin. Our results reveal an evolutionarily conserved mechanism that couples Wnt receptor activation to the cytoplasmic signal transduction apparatus.  相似文献   

5.
A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation   总被引:1,自引:0,他引:1  
Zeng X  Tamai K  Doble B  Li S  Huang H  Habas R  Okamura H  Woodgett J  He X 《Nature》2005,438(7069):873-877
Signalling by the Wnt family of secreted lipoproteins has essential functions in development and disease. The canonical Wnt/beta-catenin pathway requires a single-span transmembrane receptor, low-density lipoprotein (LDL)-receptor-related protein 6 (LRP6), whose phosphorylation at multiple PPPSP motifs is induced upon stimulation by Wnt and is critical for signal transduction. The kinase responsible for LRP6 phosphorylation has not been identified. Here we provide biochemical and genetic evidence for a 'dual-kinase' mechanism for LRP6 phosphorylation and activation. Glycogen synthase kinase 3 (GSK3), which is known for its inhibitory role in Wnt signalling through the promotion of beta-catenin phosphorylation and degradation, mediates the phosphorylation and activation of LRP6. We show that Wnt induces sequential phosphorylation of LRP6 by GSK3 and casein kinase 1, and this dual phosphorylation promotes the engagement of LRP6 with the scaffolding protein Axin. We show further that a membrane-associated form of GSK3, in contrast with cytosolic GSK3, stimulates Wnt signalling and Xenopus axis duplication. Our results identify two key kinases mediating Wnt co-receptor activation, reveal an unexpected and intricate logic of Wnt/beta-catenin signalling, and illustrate GSK3 as a genuine switch that dictates both on and off states of a pivotal regulatory pathway.  相似文献   

6.
Unexpected complexity of the Wnt gene family in a sea anemone   总被引:1,自引:0,他引:1  
The Wnt gene family encodes secreted signalling molecules that control cell fate in animal development and human diseases. Despite its significance, the evolution of this metazoan-specific protein family is unclear. In vertebrates, twelve Wnt subfamilies were defined, of which only six have counterparts in Ecdysozoa (for example, Drosophila and Caenorhabditis). Here, we report the isolation of twelve Wnt genes from the sea anemone Nematostella vectensis, a species representing the basal group within cnidarians. Cnidarians are diploblastic animals and the sister-group to bilaterian metazoans. Phylogenetic analyses of N. vectensis Wnt genes reveal a thus far unpredicted ancestral diversity within the Wnt family. Cnidarians and bilaterians have at least eleven of the twelve known Wnt gene subfamilies in common; five subfamilies appear to be lost in the protostome lineage. Expression patterns of Wnt genes during N. vectensis embryogenesis indicate distinct roles of Wnts in gastrulation, resulting in serial overlapping expression domains along the primary axis of the planula larva. This unexpectedly complex inventory of Wnt family signalling factors evolved in early multi-cellular animals about 650 million years (Myr) ago, predating the Cambrian explosion by at least 100 Myr (refs 5, 8). It emphasizes the crucial function of Wnt genes in the diversification of eumetazoan body plans.  相似文献   

7.
The Wnt family of secreted molecules functions in cell-fate determination and morphogenesis during development in both vertebrates and invertebrates (reviewed in ref. 1). Drosophila Wingless is a founding member of this family, and many components of its signal transduction cascade have been identified, including the Frizzled class of receptor. But the mechanism by which the Wingless signal is received and transduced across the membrane is not completely understood. Here we describe a gene that is necessary for all Wingless signalling events in Drosophila. We show that arrow gene function is essential in cells receiving Wingless input and that it acts upstream of Dishevelled. arrow encodes a single-pass transmembrane protein, indicating that it may be part of a receptor complex with Frizzled class proteins. Arrow is a low-density lipoprotein (LDL)-receptor-related protein (LRP), strikingly homologous to murine and human LRP5 and LRP6. Thus, our data suggests a new and conserved function for this LRP subfamily in Wingless/Wnt signal reception.  相似文献   

8.
Insulin-like growth-factor-binding proteins (IGFBPs) bind to and modulate the actions of insulin-like growth factors (IGFs). Although some of the actions of IGFBPs have been reported to be independent of IGFs, the precise mechanisms of IGF-independent actions of IGFBPs are largely unknown. Here we report a previously unknown function for IGFBP-4 as a cardiogenic growth factor. IGFBP-4 enhanced cardiomyocyte differentiation in vitro, and knockdown of Igfbp4 attenuated cardiomyogenesis both in vitro and in vivo. The cardiogenic effect of IGFBP-4 was independent of its IGF-binding activity but was mediated by the inhibitory effect on canonical Wnt signalling. IGFBP-4 physically interacted with a Wnt receptor, Frizzled 8 (Frz8), and a Wnt co-receptor, low-density lipoprotein receptor-related protein 6 (LRP6), and inhibited the binding of Wnt3A to Frz8 and LRP6. Although IGF-independent, the cardiogenic effect of IGFBP-4 was attenuated by IGFs through IGFBP-4 sequestration. IGFBP-4 is therefore an inhibitor of the canonical Wnt signalling required for cardiogenesis and provides a molecular link between IGF signalling and Wnt signalling.  相似文献   

9.
ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner   总被引:1,自引:0,他引:1  
R-spondin proteins strongly potentiate Wnt signalling and function as stem-cell growth factors. Despite the biological and therapeutic significance, the molecular mechanism of R-spondin action remains unclear. Here we show that the cell-surface transmembrane E3 ubiquitin ligase zinc and ring finger 3 (ZNRF3) and its homologue ring finger 43 (RNF43) are negative feedback regulators of Wnt signalling. ZNRF3 is associated with the Wnt receptor complex, and inhibits Wnt signalling by promoting the turnover of frizzled and LRP6. Inhibition of ZNRF3 enhances Wnt/β-catenin signalling and disrupts Wnt/planar cell polarity signalling in vivo. Notably, R-spondin mimics ZNRF3 inhibition by increasing the membrane level of Wnt receptors. Mechanistically, R-spondin interacts with the extracellular domain of ZNRF3 and induces the association between ZNRF3 and LGR4, which results in membrane clearance of ZNRF3. These data suggest that R-spondin enhances Wnt signalling by inhibiting ZNRF3. Our study provides new mechanistic insights into the regulation of Wnt receptor turnover, and reveals ZNRF3 as a tractable target for therapeutic exploration.  相似文献   

10.
11.
最近研究发现Wnt信号通路在骨形成过程中发挥重要作用Wnt受体如脂蛋白相关蛋白5(lrp5)和孤独受体(Ror2)的缺失或突变导致骨的不正常发育.Dkk是一个分泌型规范Wnt信号系统的抑制剂,通过与脂蛋白相关蛋白5和最近新发现的一种含kringle结构域的蛋白kremen形成三聚体复合物.这种复合物随即被细胞内吞,从而导致细胞表面Wnt受体脂蛋白相关蛋白5水平迅速下降,从而达到抑制Wnt信号通路的日地.通过对kremen和Ror2蛋白序列分析发现kremen和Ror2的胞外部分均含有一个结构上能与赖氨酸结合的kringle结构域.通过给怀孕母鼠注射一种赖氨酸类似物——氨甲环酸来研究kremen和Ror2的kringle结构域上的赖氨酸结合位点被占据对小鼠骨发育的作用.但是,研究结果表明AMCA组和对照组之间的骨密度并没有显著差异,揭示赖氨酸结合位点不参与骨的发育调控.  相似文献   

12.
Repressor activity of Headless/Tcf3 is essential for vertebrate head formation   总被引:10,自引:0,他引:10  
The vertebrate organizer can induce a complete body axis when transplanted to the ventral side of a host embryo by virtue of its distinct head and trunk inducing properties. Wingless/Wnt antagonists secreted by the organizer have been identified as head inducers. Their ectopic expression can promote head formation, whereas ectopic activation of Wnt signalling during early gastrulation blocks head formation. These observations suggest that the ability of head inducers to inhibit Wnt signalling during formation of anterior structures is what distinguishes them from trunk inducers that permit the operation of posteriorizing Wnt signals. Here we describe the zebrafish headless (hdl) mutant and show that its severe head defects are due to a mutation in T-cell factor-3 (Tcf3), a member of the Tcf/Lef family. Loss of Tcf3 function in the hdl mutant reveals that hdl represses Wnt target genes. We provide genetic evidence that a component of the Wnt signalling pathway is essential in vertebrate head formation and patterning.  相似文献   

13.
Glycosaminoglycans such as heparan sulphate and chondroitin sulphate are extracellular sugar chains involved in intercellular signalling. Disruptions of genes encoding enzymes that mediate glycosaminoglycan biosynthesis have severe consequences in Drosophila and mice. Mutations in the Drosophila gene sugarless, which encodes a UDP-glucose dehydrogenase, impairs developmental signalling through the Wnt family member Wingless, and signalling by the fibroblast growth factor and Hedgehog pathways. Heparan sulphate is involved in these pathways, but little is known about the involvement of chondroitin. Undersulphated and oversulphated chondroitin sulphate chains have been implicated in other biological processes, however, including adhesion of erythrocytes infected with malaria parasite to human placenta and regulation of neural development. To investigate chondroitin functions, we cloned a chondroitin synthase homologue of Caenorhabditis elegans and depleted expression of its product by RNA-mediated interference and deletion mutagenesis. Here we report that blocking chondroitin synthesis results in cytokinesis defects in early embryogenesis. Reversion of cytokinesis is often observed in chondroitin-depleted embryos, and cell division eventually stops, resulting in early embryonic death. Our findings show that chondroitin is required for embryonic cytokinesis and cell division.  相似文献   

14.
15.
16.
The Wnt proteins constitute a large family of extracellular signalling molecules that are found throughout the animal kingdom and are important for a wide variety of normal and pathological developmental processes. Here we describe Wnt-inhibitory factor-1 (WIF-1), a secreted protein that binds to Wnt proteins and inhibits their activities. WIF-1 is present in fish, amphibia and mammals, and is expressed during Xenopus and zebrafish development in a complex pattern that includes paraxial presomitic mesoderm, notochord, branchial arches and neural crest derivatives. We use Xenopus embryos to show that WIF-1 overexpression affects somitogenesis (the generation of trunk mesoderm segments), in agreement with its normal expression in paraxial mesoderm. In vitro, WIF-1 binds to Drosophila Wingless and Xenopus Wnt8 produced by Drosophila S2 cells. Together with earlier results obtained with the secreted Frizzled-related proteins, our results indicate that Wnt proteins interact with structurally diverse extracellular inhibitors, presumably to fine-tune the spatial and temporal patterns of Wnt activity.  相似文献   

17.
C E Dann  J C Hsieh  A Rattner  D Sharma  J Nathans  D J Leahy 《Nature》2001,412(6842):86-90
Members of the Frizzled family of seven-pass transmembrane proteins serve as receptors for Wnt signalling proteins. Wnt proteins have important roles in the differentiation and patterning of diverse tissues during animal development, and inappropriate activation of Wnt signalling pathways is a key feature of many cancers. An extracellular cysteine-rich domain (CRD) at the amino terminus of Frizzled proteins binds Wnt proteins, as do homologous domains in soluble proteins-termed secreted Frizzled-related proteins-that function as antagonists of Wnt signalling. Recently, an LDL-receptor-related protein has been shown to function as a co-receptor for Wnt proteins and to bind to a Frizzled CRD in a Wnt-dependent manner. To investigate the molecular nature of the Wnt signalling complex, we determined the crystal structures of the CRDs from mouse Frizzled 8 and secreted Frizzled-related protein 3. Here we show a previously unknown protein fold, and the design and interpretation of CRD mutations that identify a Wnt-binding site. CRDs exhibit a conserved dimer interface that may be a feature of Wnt signalling. This work provides a framework for studies of homologous CRDs in proteins including muscle-specific kinase and Smoothened, a component of the Hedgehog signalling pathway.  相似文献   

18.
19.
Pandur P  Läsche M  Eisenberg LM  Kühl M 《Nature》2002,418(6898):636-641
Formation of the vertebrate heart requires a complex interplay of several temporally regulated signalling cascades. In Xenopus laevis, cardiac specification occurs during gastrulation and requires signals from the dorsal lip and underlying endoderm. Among known Xenopus Wnt genes, only Wnt-11 shows a spatiotemporal pattern of expression that correlates with cardiac specification, which indicates that Wnt-11 may be involved in heart development. Here we show, through loss- and gain-of-function experiments, that XWnt-11 is required for heart formation in Xenopus embryos and is sufficient to induce a contractile phenotype in embryonic explants. Treating the mouse embryonic carcinoma stem cell line P19 with murine Wnt-11 conditioned medium triggers cardiogenesis, which indicates that the function of Wnt-11 in heart development has been conserved in higher vertebrates. XWnt-11 mediates this effect by non-canonical Wnt signalling, which is independent of beta-catenin and involves protein kinase C and Jun amino-terminal kinase. Our results indicate that the cardiac developmental program requires non-canonical Wnt signal transduction.  相似文献   

20.
Colorectal cancer results from mutations in components of the Wnt pathway that regulate beta-catenin levels. Dishevelled (Dvl or Dsh) signals downstream of Wnt receptors and stabilizes beta-catenin during cell proliferation and embryonic axis formation. Moreover, Dvl contributes to cytoskeletal reorganization during gastrulation and mitotic spindle orientation during asymmetric cell division. Dvl belongs to a family of eukaryotic signalling proteins that contain a conserved 85-residue module of unknown structure and biological function called the DIX domain. Here we show that the DIX domain mediates targeting to actin stress fibres and cytoplasmic vesicles in vivo. Neighbouring interaction sites for actin and phospholipid are identified between two helices by nuclear magnetic resonance spectroscopy (NMR). Mutation of the actin-binding motif abolishes the cytoskeletal localization of Dvl, but enhances Wnt/beta-catenin signalling and axis induction in Xenopus. By contrast, mutation of the phospholipid interaction site disrupts vesicular association of Dvl, Dvl phosphorylation, and Wnt/beta-catenin pathway activation. We propose that partitioning of Dvl into cytoskeletal and vesicular pools by the DIX domain represents a point of divergence in Wnt signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号