首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
S Noji  T Nohno  E Koyama  K Muto  K Ohyama  Y Aoki  K Tamura  K Ohsugi  H Ide  S Taniguchi 《Nature》1991,350(6313):83-86
Retinoic acid is a putative morphogen in limb formation in the chick and other vertebrates. In chick limb formation, it is thought that retinoic acid is released from the zone of polarizing activity (ZPA) and the concentration gradient of retinoic acid formed from the posterior to the anterior provides positional cues for digit formation. Implantation of a bead containing retinoic acid at the anterior margin of the limb bud induces a mirror-image symmetrical duplication of the digit pattern similar to that observed when the ZPA is grafted into the anterior margin of the host limb bud. Also, the level of endogenous retinoic acid (25 nM on average) is higher in the posterior one third of the limb bud. We found that when the bead containing either retinoic acid or an analogue but not the ZPA, was implanted in the anterior margin of the chick limb bud, expression of the retinoic acid receptor type-beta gene was induced around the bead within 4 h. These results indicate that exogenous retinoic acid is not identical with the ZPA morphogen. As the anterior tissue exposed to retinoic acid has polarizing activity, we conclude that the primary function of exogenous retinoic acid is to induce polarizing activity in the limb bud.  相似文献   

2.
C Thaller  G Eichele 《Nature》1987,327(6123):625-628
All-trans-retinoic acid (RA) induces striking digit pattern duplications when locally applied to the developing chick limb bud. Instead of the normal digit pattern (234) a mirror-symmetrical 432234 pattern can be specified. Hence, RA closely mimics posterior limb bud tissue (the zone of polarizing activity, ZPA) that causes very similar duplications when grafted to an anterior site of a host limb bud. This resemblance raises an intriguing possibility: that RA is related to the as yet unidentified inducer substance thought to be released by the ZPA. Here we report that chick limb buds contain endogenous RA and we show that RA, but not its biosynthetic precursor retinol, forms a concentration gradient across the limb anlage with a high-point in the posterior domain of the limb bud, the part that also contains the ZPA.  相似文献   

3.
N Wanek  D M Gardiner  K Muneoka  S V Bryant 《Nature》1991,350(6313):81-83
In recent years there has been considerable interest in the role of retinoic acid (RA) in vertebrate-limb pattern formation. When RA is applied to the anterior of the chick wing bud, a mirror-image duplication of the limb pattern develops that is identical to the pattern resulting from grafts of posterior tissue (zone of polarizing activity, or ZPA). It has been proposed that position along the anterior-posterior axis in the chick limb is specified by a gradient of a diffusible factor produced by the ZPA. The ZPA-mimicking action of RA has led to the hypothesis that exogenously applied RA acts by providing graded spatial information across the anterior-posterior limb axis. An alternative interpretation is that RA changes anterior cells into ZPA cells, which in turn provide the actual pattern-duplicating stimulus; there is already some preliminary evidence that this occurs. A hybrid interpretation has also been suggested whereby ZPA cells are formed in response to RA exposure and then begin to release retinoids that act as graded spatial cues. We have used a functional assay to test anterior chick wing-bud cells for ZPA activity after exposure to RA. The results of our studies indicate that the action of RA is to change anterior cells into ZPA cells. Further, our results indicate that it is unlikely that RA-treated anterior cells then begin producing RA in such a way as to provide a graded positional signal.  相似文献   

4.
C Thaller  G Eichele 《Nature》1990,345(6278):815-819
There is increasing evidence that retinoic acid is a morphogen involved in vertebrate development. This evidence comes in part from studies of the chick wing bud, in which local application of all-trans-retinoic acid results in a duplication of the digit pattern along the anteroposterior axis. Retinoic acid may be only one of several morphogenetic signalling compounds required for limb pattern formation. To identify novel morphogenetically active compounds, fractionated extracts of whole chick embryos were tested for their ability to induce digit pattern duplications. We describe here the isolation of a new activity present in the limb bud, which we have identified as all-trans-3,4-didehydroretinoic acid. The 3,4-didehydroretinoic acid is generated in situ from retinol through a 3,4-didehydroretinol intermediate. We show that 3,4-didehydroretinoic acid and retinoic acid are equipotent in evoking digit duplications. These findings suggest that there are at least two endogenous retinoids with morphogenetic properties in the chick limb.  相似文献   

5.
M Maden  D E Ong  D Summerbell  F Chytil 《Nature》1988,335(6192):733-735
  相似文献   

6.
B L Hogan  C Thaller  G Eichele 《Nature》1992,359(6392):237-241
Hensen's node of amniotes, like the Spemann organizer of amphibians, can induce a second body axis when grafted into a host embryo. The avian node, as well as several midline structures originating from it (notochord, floor plate), can also induce digit pattern duplications when grafted into the chick wing bud. We report here that the equivalent of Hensen's node from mouse is an effective inducer of digits in the chick wing bud. Tissues anterior and posterior to the node also evoke pattern duplications, but with a significantly lower efficiency. The finding that the murine node operates in an avian wing bud suggests that the same inducing agent(s) function in both primary and secondary embryonic fields and have been conserved during vertebrate evolution. Digit pattern duplications are also evoked by local administration of all-trans-retinoic acid. This similarity raises the possibility that Hensen's node is a source of retinoic acid. The mouse node is capable of synthesizing retinoic acid from its biosynthetic precursor all-trans-retinol at a substantially higher rate than either anterior or posterior tissues.  相似文献   

7.
8.
V Giguère  E S Ong  R M Evans  C J Tabin 《Nature》1989,337(6207):566-569
Retinoic acid is known to have dramatic effects on vertebrate limb pattern in development and regeneration, supporting a model in which a gradient of retinoic acid serves as a morphogen to differentially supply positional information to a developing limb. The discovery of a retinoic acid receptor (RAR) and its homology to the steroid and thyroid hormone receptors provided a potential molecular mechanism for limb morphogenesis. One prediction of this model is that the receptor must be expressed in the developing and regenerating limb anlage. We investigated the expression of the RAR in the adult newt, Notophthalmus viridescens, whose amputated limbs are capable of regenerating and upon which retinoic acid can act to alter pattern. We report the cloning of cDNAs encoding a functional newt RAR and the localization of high and uniform levels of RAR mRNA specifically in the regenerating cells that control limb pattern. These results indicate that the morphogenic field is established through differential activation of pre-existing retinoic acid receptors rather than differential expression of the RAR gene.  相似文献   

9.
P Mohanty-Hejmadi  S K Dutta  P Mahapatra 《Nature》1992,355(6358):352-353
Niazi and Saxena first observed that vitamin A has an inhibitory and modifying influence on tail regeneration in Bufo andersonii tadpoles. A positive relationship was later found between the inhibiting influence of vitamin A and the developmental stage of the regenerating tail in the same species. There have been several subsequent reports on the effects of vitamin A and its derivatives on limb development and regeneration. Thus in regenerating amphibian limbs, application of retinoids produces pattern duplication in the proximodistal and anteroposterior axes of the limb, and local application of retinoic acid to the anterior side of developing chick limbs causes duplications in the anteroposterior axis of limb. Here we show that vitamin A can cause limb development when applied to amputated tail stumps of the tadpoles of the marbled balloon frog Uperodon systoma (Anura Microhylidae). This is the first report of homeotic transformation mediated through vitamin A in vertebrates.  相似文献   

10.
11.
Y Yokouchi  H Sasaki  A Kuroiwa 《Nature》1991,353(6343):443-445
The complex architecture of the limb cartilage pattern probably develops by the sequential segmentation and branching process of precartilaginous cell condensation under the control of positional signalling provided by the zone of polarizing activity (anteroposterior) and the apical ectodermal ridge (proximodistal). This signalling is monitored and interpreted in the mesenchymal cells and induces the position-specific response of subsets of genes. Homeobox genes may be responsible for the interpretation of signalling. A correlation between limb pattern and expression domains of the homeobox genes in the upstream region of Hox/Chox-4 has been proposed. We have analysed the spatial expression pattern of the Chox-1 genes during development of chick limb buds. In contrast to genes in Hox/Chox-4 expressed coordinately along the anteroposterior axis, homeobox genes in Chox-1 have unique and mutually exclusive expression domains along the proximodistal axis. We report here that the expression domains of the Chox-1 genes are closely related to the segmental structure of cartilage along the proximodistal axis, whereas the expression domains of the Chox-4 genes are related to the cartilage branching pattern.  相似文献   

12.
S A Kliewer  K Umesono  D J Noonan  R A Heyman  R M Evans 《Nature》1992,358(6389):771-774
Peroxisomes are cytoplasmic organelles which are important in mammals in modulation of lipid homeostasis, including the metabolism of long-chain fatty acids and conversion of cholesterol to bile salts (reviewed in refs 1 and 2). Amphipathic carboxylates such as clofibric acid have been used in man as hypolipidaemic agents and in rodents they stimulate the proliferation of peroxisomes. These agents, termed peroxisome proliferators, and all-trans retinoic acid activate genes involved in peroxisomal-mediated beta-oxidation of fatty acids. Here we show that the receptor activated by peroxisome proliferators and the retinoid X receptor-alpha (ref. 6) form a heterodimer that activates acyl-CoA oxidase gene expression in response to either clofibric acid or the retinoid X receptor-alpha ligand, 9-cis retinoic acid, an all-trans retinoic acid metabolite; simultaneous exposure to both activators results in a synergistic induction of gene expression. These data demonstrate the coupling of the peroxisome proliferator and retinoid signalling pathways and provide evidence for a physiological role for 9-cis retinoic acid in modulating lipid metabolism.  相似文献   

13.
All-trans retinoic acid (RA) is well known as a biologically active form of vitamin A and a teratogen. The identification of nuclear receptors for this ligand suggests strongly that it is an endogenous signal molecule, and measurements of RA and teratogenic manipulations suggest further that RA is a morphogen specifying the anteroposterior axis during limb development. Besides the limb, RA and other retinoids affect development of other organs, including the central nervous system (CNS). None of these other effects has been investigated in detail. Our purpose here was to begin analysing the effects of RA on CNS development in Xenopus laevis. We find that RA acts on the developing CNS, transforming anterior neural tissue to a posterior neural specification. These and other findings raise the possibility that RA mediates an inductive interaction regulating anteroposterior differentiation within the CNS. Following recent reports implicating transforming growth factor-beta 2-like and fibroblast growth factor-like factors in mesoderm induction, this indicates that a different type of signal molecule (working through a nuclear receptor, not a plasma membrane receptor) might mediate inductive cell interactions during early embryonic development.  相似文献   

14.
15.
对近年来视黄素受体介导视黄素抗癌作用机理的研究进展作一综述,主要有:1)视黄素受体;2)视黄素受体与细胞生长;3)视黄素受体与孤生受体的的相关性;4)视黄素受体对AP-1活性的抑制作用;5)视黄素受体介导的信号转导途径。通过研究,对于探讨视黄素受体的功能、阐明视黄素的抗癌机理、合成更多的受体选择性视黄素具有重要的现实意义。  相似文献   

16.
S M Cohen 《Nature》1990,343(6254):173-177
Limb development in Drosophila requires the activity of a proximo-distal pattern-forming system, in addition to the antero-posterior and dorso-ventral pattern-forming systems that subdivide the embryo. Several lines of genetic evidence indicate that the Distal-less gene plays an important part in specifying proximo-distal positional information. The Distal-less locus encodes a homoeodomain-containing protein, which suggests that Distal-less may exert its activity through differential regulation of subordinate genes. The spatially restricted pattern of Distal-less expression allows direct visualization of the limb primordia during early embryogenesis. Here I report that from their inception, the leg primordia span the parasegment boundary. The segment polarity gene wingless seems to have a key part in defining the positions at which leg primordia will develop along the antero-posterior axis of the embryo. This analysis allows a direct molecular visualization of the compartments that subdivide the limb primordia into discrete developmental domains.  相似文献   

17.
Homodimer formation of retinoid X receptor induced by 9-cis retinoic acid.   总被引:56,自引:0,他引:56  
Retinoid response pathways are mediated by two classes of receptors, the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs). A central question is whether distinct response pathways are regulated by these two classes of receptors. The observation that the stereoisomer 9-cis-retinoic acid binds with high affinity to RXRs suggested that this retinoid has a distinct role in controlling RXR activity, but it was almost simultaneously discovered that RXRs function as auxiliary receptors for RARs and related receptors, and are essential for DNA binding and function of those receptors. Hence, although RARs seem to operate effectively only as heterodimeric RAR/RXR complexes, RXRs themselves apparently function predominantly, if not exclusively, as auxiliary receptors. Here we report that 9-cis-retinoic acid induces RXR homodimer formation. Our results demonstrate a new mechanism for retinoid action by which a ligand-induced homodimer mediates a distinct retinoid response pathway.  相似文献   

18.
19.
Identification of a second human retinoic acid receptor   总被引:119,自引:0,他引:119  
We have previously described a human complementary DNA that encodes a novel protein which is homologous to members of the steroid/thyroid nuclear receptor multigene family. This novel protein (hap for hepatoma) exhibits strong homology with the human retinoic acid receptor (RAR) which has been recently characterized. To test the possibility that the hap protein might also be a retinoid receptor, a chimaeric receptor was created by replacing the putative DNA binding domain of hap with that of the human oestrogen receptor (ER). The resulting hap-ER chimaera was then tested for its ability to trans-activate an oestrogen-responsive reporter gene (vit-tk-CAT) in the presence of possible receptor ligands. Here we show that retinoic acid (RA) at physiological concentrations is effective in inducing the expression of this reporter gene by the hap-ER chimaeric receptor. This demonstrates the existence of two human retinoic acid receptors designated RAR-alpha and RAR-beta.  相似文献   

20.
In urodele amphibians, the progenitor cells that regenerate amputated limbs (known as the blastema) normally replace only the missing structures. After systemic delivery of retinoic acid (RA), more proximal structures are also formed, indicating that RA can control position specification in the proximal-distal axis of the regenerating limb. According to dose and experimental context, retinoids can also re-specify the anteroposterior axis of the limb, induce deletions of skeletal elements, or block re-growth completely. To study the molecular basis of these morphogenetic effects, we screened complementary DNA libraries of newt regenerative tissues (limbs and tails) for hormone nuclear receptors activated by RA. Two functional retinoic acid receptors (RARs) were identified, one of which is the newt homologue of the human alpha-receptor (RAR alpha). The second receptor, called RAR delta, is novel. Sequence analysis suggests that the composite newt RAR previously reported is chimaeric, consisting of 5'RAR-beta-like and 3' RAR delta clones. We conclude that multiple RARs are expressed during limb regeneration in amphibians and suggest that receptor heterogeneity may underlie the different effects of retinoids on limb morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号