首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
F类射频功率放大器作为开关模式放大器的一种,其理想效率为100%。传统F类功率放大器的设计方法是利用输出端谐波抑制,在晶体管的漏极得到近似方波的电压信号和近似半正弦波的电流信号,以此提高放大器效率。文章通过研究电路的结构,在F类功率放大器的输入端加入谐波抑制电路,同时利用输入和输出谐波抑制匹配网络,能够更有效提高输出功率和功率附加效率;结合宽禁带功率器件,在S波段完成一款电路的设计,在3.45~3.55GHz频带内,输入激励为28dBm条件下,测试得到最大PAE能够达到78.3%,输出功率40.5dBm,实验结果和仿真结果基本吻合。  相似文献   

2.
应用于WLAN的高效率F类功率放大器   总被引:1,自引:0,他引:1  
为了提高在高速率信号传输下无线通讯发射系统中功率放大器的工作效率,提出了一种结构新颖的高效率F类功率放大器.通过计算机仿真与实验板调试相结合的方法确定了放大器的最佳漏极阻抗,根据F类放大器漏极电压和漏极电流是相位差为λ/4的方波和半正弦波的特性,通过仿真软件设计和优化,设计出的谐波滤波网络在输出谐波频点有良好的滤波性能.为了降低栅源电容对输入信号造成的失真,在输入端口加入短截线,提高了放大器的漏极效率.通过测试,功率放大器工作在2.4GHz时,在2dB增益压缩点的功率附加效率为67%,输出功率为30dBm.测试结果表明,该高效率功率放大器适合应用于WLAN无线通讯发射系统.  相似文献   

3.
传统的F类功率放大器设计方法是对其输出端进行谐波抑制,在输出端得到近似方波的电压信号和近似半正弦波的电流信号,以此提高放大器效率.新型高效率F类功率放大器在输入端加入谐波抑制电路,同时利用输入和输出谐波抑制匹配网络能够有效提高输出功率和功率附加效率;在S波段完成一款电路的设计并进行测试,在电路设计中采用新的负载牵引、源牵引仿真方法,实验结果和仿真结果非常吻合.在输入激励为28dBm条件下,测试结果表明,最大PAE能够达到75.4%,输出功率40.3dBm.  相似文献   

4.
F类射频功率放大器是一种新型高效率的放大器,理论效率可以达到100%,在移动通信领域有着广阔的发展前景。文章介绍了F类功率放大器的电路结构、工作原理,并对效率进行了分析;在L波段对电路进行了设计和试验,实测结果和仿真结果基本吻合,验证了研究结果的一致性。  相似文献   

5.
鉴于高速数传收发器频带宽度为3088 MHz,通过ADS仿真软件进行仿真优化,设计了一款VHF波段宽带功率放大器电路,将功放频带拓宽为3088 MHz,通过ADS仿真软件进行仿真优化,设计了一款VHF波段宽带功率放大器电路,将功放频带拓宽为30108 MHz。同时为了滤除二次及以上谐波,在放大器后加入滤波器。最终设计出了一款30108 MHz。同时为了滤除二次及以上谐波,在放大器后加入滤波器。最终设计出了一款30108 MHz宽带功率放大器,输入输出回波损耗优于-10 dB、带内增益波动在±1 dB之内,其增益达到30 dB。滤波器达到带内差损小于1 dB,谐波抑制大于48 dB。  相似文献   

6.
针对射频功率放大器存在的效率及带宽问题,文中设计了一款高效宽带GaN HEMT功率放大器(power amplifier, PA),采用阶跃式匹配结构实现其输入输出匹配网络设计,结合典型的十字型谐波控制技术实现了二、三次谐波的控制,极大地提高了输出效率。以GaN HEMT晶体管为核心器件,通过设置合适的偏置网络和匹配网络结构实现了电路设计。仿真结果表明,在2.3~2.9 GHz内其输出功率(Pout)为41~42.1 dBm,增益(Gain)达12~13.1 dB、漏极效率(drain efficiency, DE)达69.1%~77.7%、功率附加效率(power added efficiency, PAE)达67.1%-74.3%。  相似文献   

7.
为了提高WiMAX信号下doherty功率放大器(doherty power amplifier,DPA)回退点的效率,提出一种基于谐波抑制和补偿线技术的非对称doherty功放(asymmetric doherty power amplifiers,ADPA)结构。该结构在传统ADPA结构的基础上,首先对主功放(carrier)和辅功放(peak)输出匹配电路加入2次、3次谐波电路进行匹配设计,减少晶体管漏极电压电流的重合;然后通过添加补偿线(offset line)的方式,改变carrier和peak的功率分配比,使得整体电路获得更高的效率和输出功率。基于上述谐波抑制和补偿线理论,设计了一款工作在3.4 GHz~3.6 GHz,增益约为13 dB的ADPA。实测结果表明,当饱和输出功率达到48.75 dBm,功率回退9.5 dB时,功率附加效率(power added efficiency,PAE)达到41.8%,5 MHz偏移量的相邻信道功率比(adjacent channel power ratio,ACPR)优于-35 dBc,10 MHz偏移量的ACPR优于-48 dBc。满足WiMAX基站对功放线性度和效率的要求。  相似文献   

8.
文章提出对E类功率放大器进行谐波抑制的改进设计方法,有效利用输入端信号功率,从而提高功放的功率附加效率;分析了E类功率放大器的工作原理,结合新型宽禁带功率器件利用ADS软件进行了电路仿真设计,并对实际放大器电路进行了实际测试。结果表明,对输入端谐波抑制的改进可以使功率放大器在1.1~1.3GHz频段内输出功率保持在10W以上,功率附加效率达到了79.6%,比改进前E类功率放大器的效率有了明显的提高。  相似文献   

9.
于洋 《甘肃科技》2016,(14):65-67
本研究设计完成了一款高速微波固态功率放大器漏极脉冲调制电路,脉冲前后沿小于50ns。主要采用高速大电流低内阻的PMOS管为微波固态功率放大器设计了漏极脉冲调制控制电路,较传统电路有很大改进,固态功率放大器的工作状态可随意变换,有功率容量大、效率高、隔离性高等优点。最终基于该调制电路设计了一款C波段高速微波功率放大器,放大器工作频率在5.5GHz±200MHz,放大器实现了低功耗工作,输出信号前后沿小于50ns,降低了工作热损耗。  相似文献   

10.
采用射频预失真的新型大功率Doherty功放设计与实现   总被引:1,自引:1,他引:0  
针对大功率射频功率放大器在设计研制上都存在较大困难,特别是大功率难匹配,实现大功率后线性度差、效率低等问题,设计一种适用于无线通信基站系统的二路大功率Doherty功率放大器。采用新型射频预失真芯片构建高集成度的线性化电路,改善该功率放大器的线性。仿真结果表明,在饱和功率回退6 dB时,该功率放大器平均输出功率可达到100 W,效率可达到44.158%,从而实现高效率和大功率的输出;加入预失真电路后,功放线性改善了20 dB。实测结果验证了仿真的一致性。  相似文献   

11.
功率放大器是磁耦合无线电能传输系统的前端功率输入设备,对于无线电能传输系统的高效稳定运行起到至关重要的作用.本文给出了功率放大器的基本拓扑、匹配网络和整体电路设计方法,使其达到较高的传输效率.采用ADS软件对功率放大器性能进行分析,结果表明,设计的功率放大器在8.5 MHz中心频率上,当输入信号为29 d Bm时能够获得的最大功率为18.928 W,效率为89.516%.  相似文献   

12.
为了在工作频段内获得良好的增益平坦度、隔离度及输入输出匹配,采用在基站驱动级功放设计中引入平衡结构的方法。在研究功放平衡电路结构和工作原理基础上,设计实现了两个工作频段在2 110~2 170 MHz,应用于基站系统的驱动级功率放大器.对功放进行仿真和实际测试,测试结果与仿真结果的高度一致性验证了这种方案的有效性,同时在整个工作频段内功放的增益平坦度都小于±0.5 dB,隔离度小于-27 dB,输入输出匹配参数良好。结果表明:设计的平衡放大器可以很好地应用在基站系统中,从而提高基站功放系统性能。  相似文献   

13.
采用Doherty技术设计并实现了一款应用于无线通信基站的S波段高效率功率放大器,通过非对称功率输入的方式使得整个功放在更宽的功率范围内获得高效率。设计中采用了安捷伦公司的先进设计系统软件(advanced design system,ADS),选取恩智浦公司型号为MRF7S21080H与MRF8S21100H的横向扩散金属氧化物半导体(laterally diffused metal oxide semiconductor,LDMOS)功放晶体管,两款晶体管的工作频率均为2.14~2.17 GHz。经过电路仿真与实物调试,最终设计并实现了功率回退达到7 dB的功率放大器,其增益为13.5 dB,并且在7 dB功率回退点上效率达到35%,峰值功率效率达到42%。相比其他功率放大器,该放大器具有较大的功率回退范围与更高的效率。结果证明,通过不对称输入方式所设计的Doherty功率放大器可以获得更宽的功率回退范围。  相似文献   

14.
提出了一种基于全差分电流反馈运算放大器(FDCFOA)的混合模式二阶滤波器电路.与CFOA实现该滤波器电路相比,可以大大降低总谐波失真(在100 mV输入电压,1 MHz的总谐波失真为3.60%).该电路在不改变电路结构的前提下就能同时实现全差分输入、输出电压模式和电流模式滤波器低通、高通和带通的功能.滤波器电路还具有灵敏度低,固有频率ω和品质因数Q可以独立调节.采用90 nm CMOS工艺完成了PSPICE仿真,理论分析和仿真结果证明了电路的有效性.   相似文献   

15.
逆变器已经成为现代电网不可或缺的部分,广泛应用于电网与可再生能源和各种负荷之间。逆变器末端的滤波电路属于重要的部件之一,其参数状态决定于逆变器的品质及可靠性。首先通过建立谐波状态空间数学模型,获得输入量与输出量之间的耦合关系,然后注入扰动电压到逆变器输入端,通过检测输出电流的信号,利用输出量与输入量之间的耦合关系来判断逆变器滤波电路的状态情况,并将仿真所得到的输出电流的谐波含量与滤波电路元器件参数的改变关系拟合成线性关系图。最后通过实验样机验证了方法的有效性。  相似文献   

16.
周游 《科学技术与工程》2011,11(14):3201-3203
设计和研究了一种高增益恒跨导Rail-Rail CMOS运算放大器,输入级采用工作在亚阈值区的互补差分形式输入结构。与以往输入结构相比,不仅使输入共模电压达到Rail-Rail,而且降低了工作电压,提高了电源利用率。利用电流开关的作用使输入跨导在输入共模范围内恒定。中间级为MOS差分结构,并且同向驱动输出级使其具有推挽特性。采用嵌套米勒频率补偿使运算放大器稳定。整个电路采用华虹0.35μmCMOS工艺参数进行设计,工作电压为3.0 V。利用OrCAD HSPICE仿真结果显示,在10 kΩ电阻和5 pF电容的负载下,运算放大的直流开环增益为110 dB,相位裕度为70°,单位增益带宽为45 MHz。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号