首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zanazzi A  Kohn MJ  MacFadden BJ  Terry DO 《Nature》2007,445(7128):639-642
The Eocene-Oligocene transition towards a cool climate (approximately 33.5 million years ago) was one of the most pronounced climate events during the Cenozoic era. The marine record of this transition has been extensively studied. However, significantly less research has focused on continental climate change at the time, yielding partly inconsistent results on the magnitude and timing of the changes. Here we use a combination of in vivo stable isotope compositions of fossil tooth enamel with diagenetic stable isotope compositions of fossil bone to derive a high-resolution (about 40,000 years) continental temperature record for the Eocene-Oligocene transition. We find a large drop in mean annual temperature of 8.2 +/- 3.1 degrees C over about 400,000 years, the possibility of a small increase in temperature seasonality, and no resolvable change in aridity across the transition. The large change in mean annual temperature, exceeding changes in sea surface temperatures at comparable latitudes and possibly delayed in time with respect to marine changes by up to 400,000 years, explains the faunal turnover for gastropods, amphibians and reptiles, whereas most mammals in the region were unaffected. Our results are in agreement with modelling studies that attribute the climate cooling at the Eocene-Oligocene transition to a significant drop in atmospheric carbon dioxide concentrations.  相似文献   

2.
As one of the most important geological events in Cenozoic era,the uplift of the Tibetan Plateau(TP)has had profound influences on the Asian and global climate and environment evolution.During the past four decades,many scholars from China and abroad have studied climatic and environmental effects of the TP uplift by using a variety of geological records and paleoclimate numerical simulations.The existing research results enrich our understanding of the mechanisms of Asian monsoon changes and interior aridification,but so far there are still a lot of issues that need to be thought deeply and investigated further.This paper attempts to review the research on the influence of the TP uplift on the Asian monsoon-arid environment,summarize three types of numerical simulations including bulk-plateau uplift,phased uplift and sub-regional uplift,and especially to analyze regional differences in responses of climate and environment to different forms of tectonic uplifts.From previous modeling results,the land-sea distribution and the Himalayan uplift may have a large effect in the establishment and development of the South Asian monsoon.However,the formation and evolution of the monsoon in northern East Asia,the intensified dryness north of the TP and enhanced Asian dust cycle may be more closely related to the uplift of the main body,especially the northern part of the TP.In this review,we also discuss relative roles of the TP uplift and other impact factors,origins of the South Asian monsoon and East Asian monsoon,feedback effects and nonlinear responses of climatic and environmental changes to the plateau uplift.Finally,we make comparisons between numerical simulations and geological records,discuss their uncertainties,and highlight some problems worthy of further studying.  相似文献   

3.
Recent mapping in the Gangdese block has revealed many leucogranites that are similar to those in the High Himalaya. These leucogranites formed at ~140 Ma as indicated by monazite Th-Pb ion-microprobe dating and cooled at ~130 Ma as indicated by muscovite ^40Ar/^39Ar dating. In conjunction with previous structural and paleogeographic studies, the new data indicate that the Gangdese block underwent crustal thickening and associated exhumation during ~140—130 Ma. In this regard, the southern margin of Eurasia continent was comparable to the modern South American Altiplano-Puna plateau, the prime example of active ocean-continent subduction and associated thickened crust. Specifically, the early stages of crustal thickening and uplifting of the Gangdese block may result from subduction of the Neo-Tethyan Ocean. If the Tibetan Plateau would form by accretion of a series of blocks with thickened crust, an elevated topographic plateau similar to the Altiplano-Puna plateau had formed before collision between the Indian and Eurasian plates. Then the Tibetan Plateau would have quickly thickened, uplifted, and begun to extend soon after onset of the collision. Thus, the deformational mechanism of the Tibetan Plateau is not distributed shortening, but rather concentrating deformation within regions of thin crust between the accreted blocks.  相似文献   

4.
Ravelo AC  Andreasen DH  Lyle M  Olivarez Lyle A  Wara MW 《Nature》2004,429(6989):263-267
The Earth's climate has undergone a global transition over the past four million years, from warm conditions with global surface temperatures about 3 degrees C warmer than today, smaller ice sheets and higher sea levels to the current cooler conditions. Tectonic changes and their influence on ocean heat transport have been suggested as forcing factors for that transition, including the onset of significant Northern Hemisphere glaciation approximately 2.75 million years ago, but the ultimate causes for the climatic changes are still under debate. Here we compare climate records from high latitudes, subtropical regions and the tropics, indicating that the onset of large glacial/interglacial cycles did not coincide with a specific climate reorganization event at lower latitudes. The regional differences in the timing of cooling imply that global cooling was a gradual process, rather than the response to a single threshold or episodic event as previously suggested. We also find that high-latitude climate sensitivity to variations in solar heating increased gradually, culminating after cool tropical and subtropical upwelling conditions were established two million years ago. Our results suggest that mean low-latitude climate conditions can significantly influence global climate feedbacks.  相似文献   

5.
青藏高原拉萨地块是印度板块与欧亚板块碰撞的重要地区之一,其中广泛发育的碰撞—后碰撞岩浆岩记录了新生代以来印度大陆岩石圈向北俯冲的全过程以及拉萨地块在碰撞-后碰撞之后的岩浆作用类型.基于对措勘—赛利普地区新生代火山岩地球化学及Sr、Nd同位素资料的分析,表明火山岩中以明显富碱和高钾为特征;Sr同位素呈递增而Nd同位素呈递...  相似文献   

6.
Geodetic evidence for a low slip rate in the Altyn Tagh fault system   总被引:8,自引:0,他引:8  
Bendick R  Bilham R  Freymueller J  Larson K  Yin G 《Nature》2000,404(6773):69-72
The collision between India and Asia has been simulated with a variety of computational models that describe or predict the motions of the main faults of east Asia. Geological slip-rate estimates of 20-30 mm yr(-1) suggest that the largest of these faults, the 2,000-km-long Altyn Tagh fault system on the northern edge of the Tibetan plateau, absorbs as much of the Indo-Asian convergence signal as do the Himalayas--partly by oblique slip and partly by contraction and mountain growth. However, the predictions of dynamic models for Asian deformation and the lower bounds of some geological slip-rates estimates (3-9 mm yr(-1); refs 7, 8) suggest that the Altyn Tagh system is less active. Here, we report geodetic data from 89-91 degrees E that indicate left-lateral shear of 9 +/- 5 mm yr(-1) and contraction of 3 +/- 1 mm yr(-1) across the Altyn Tagh system. This result--combined with our finding that, at 90 degrees E, Tibet contracts north-south at 9 +/- 1 mm yr(-1)--supports the predictions of dynamic models of Asian deformation.  相似文献   

7.
Extensive lacustrine deposits in the eastern Tarim Basin provide records of climate change influenced by the westerly winds and the Asian monsoon. To char- acterize the evolution of climate change in this region, we analyze elemental concentrations of barium (Ba) from the Ls2 drill core of Lop Nor, a paleo-lakebed located in the eastern Tarim Basin. Biogenic Ba concentrations from this drill core display a large-amplitude oscillation that gener- ally follows a pattern similar to that of Artemisia content and ostracod assemblages, suggesting that is may serve as an index for climate change experienced in the basin. Our results indicate that biogenic Ba is especially sensitive to precipitation. All climatic proxies served in this study vary significantly over late Miocene to early Pleistocene time period. Strong aridification of eastern Tarim in the late Miocene to the early Pliocene may be attributed to a lati- tudinal shift in the westerly winds, which would have resulted in more moisture transported to southern and eastern Tibet. The growth of the Himalaya and Tibetan Plateau may have acted as an orographic barrier that blocked moisture sourced in the south from the northern margins of the plateau. We link weaker aridification in the late Pliocene to an increased intensity of the Indian Monsoon.  相似文献   

8.
Zhisheng A  Kutzbach JE  Prell WL  Porter SC 《Nature》2001,411(6833):62-66
The climates of Asia are affected significantly by the extent and height of the Himalayan mountains and the Tibetan plateau. Uplift of this region began about 50 Myr ago, and further significant increases in altitude of the Tibetan plateau are thought to have occurred about 10-8 Myr ago, or more recently. However, the climatic consequences of this uplift remain unclear. Here we use records of aeolian sediments from China and marine sediments from the Indian and North Pacific oceans to identify three stages of evolution of Asian climates: first, enhanced aridity in the Asian interior and onset of the Indian and east Asian monsoons, about 9-8 Myr ago; next, continued intensification of the east Asian summer and winter monsoons, together with increased dust transport to the North Pacific Ocean, about 3.6-2.6 Myr ago; and last, increased variability and possible weakening of the Indian and east Asian summer monsoons and continued strengthening of the east Asian winter monsoon since about 2.6 Myr ago. The results of a numerical climate-model experiment, using idealized stepwise increases of mountain-plateau elevation, support the argument that the stages in evolution of Asian monsoons are linked to phases of Himalaya-Tibetan plateau uplift and to Northern Hemisphere glaciation.  相似文献   

9.
The southeastern Chinese Loess Plateau is the terminal deposition area of dusts transported by the East Asian winter monsoon and the frontal area penetrated by the East Asian summer monsoon,and thus a climate sensitive region.This paper reports a rock magnetic study of a Quaternary loess-paleosol section in such a region.We tried to reconstruct the paleoclimate evolution history in the region during 1.95–0.40 Ma with magnetic parameters.The results show a general up-section decreasing trend of the ratio of HIRM/(SIRM–IRM100 mT),indicating a long-term decreasing trend of hematite coercivities in the deposits,which can be mainly related to the cooling and aridification trend of the environment in interglacial depositional area and glacial dust source region.The ratio,lf/ARM,widely used to reflect the variations of magnetic mineral grain size,manifests a long-term increasing trend of the magnetic mineral grain size and tends to indicate an overall weakening trend of the East Asian summer monsoon that controlled the pedogenic intensity.Although the regional multi-segmented paleoclimatic records revealed by several magnetic parameters in our study,the long-term Asian cooling and aridification trend inferred here is of global correlation significance.  相似文献   

10.
The Xining Basin on the northeastern Tibetan Plateau holds the longest continuous Cenozoic stratigraphic record in China. The sequence record contains considerable information on the history of Tibetan uplift and associated climatic change. In particular, high resolution n-alkane biomarker proxy and pollen records have been obtained from the Paleogene sediments of the Xiejia section of the basin. A combination of the n-alkane and palynological records reveals that the paleoclimate in the Xining Basin experienced a long-term cooling trend from 50.2 to 28.2 Ma with a distinctive ecological event spanning 37.5 to 32.7 Ma. Since this ecological event, a vertical zonation of vegetation from lowland arid grasses, to middle-elevation subtropical broad-leaf plants, to high-elevation coniferous trees was established. We interpret that these changes in climate and vegetation were probably responses to a combination of long term global cooling since the Eocene climatic optimum and uplift of the surrounding mountains on the northern Tibetan Plateau in the early Cenozoic.  相似文献   

11.
 青藏高原的隆升不仅是印度板块与亚洲板块碰撞导致的地球内部岩石圈地球动力学作用过程的结果,并且对全球和亚洲气候变化、亚洲地貌和地表环境过程及大量地内和地表矿产资源的形成分布产生了深刻影响。因而研究高原隆升的历史不仅对解决上述重大科学问题提供重要途径,而且可为高原区域资源环境的开发和可持续发展提供理论依据。简要回顾和梳理了国内外近年来,围绕青藏高原隆升所取得的主要进展。研究表明新生代青藏高原经历了多阶段、多幕次、准同步异幅且高原南北后期加速隆升的演化过程。具体可划分为55~30、25~10及8~0 Ma 3个主要生长隆升期次。其中55~30 Ma的高原早期隆升,主要集中在高原中南部的拉萨地块和羌塘地块,并且可能隆升到接近3 km高度,或甚至更高,有人称之为“原西藏高原”,但其周缘存在准同步异幅的变形隆升响应;25~10 Ma的中期隆升,“原西藏高原”南北缘的喜马拉雅山和可可西里-昆仑山开始强烈隆升,“原西藏高原”率先隆升到目前高度并开始向东西两侧挤出物质、拉张形成南北向裂谷,高原北缘普遍产生广泛变形隆升但幅度有限;从约8 Ma开始的晚期隆升,高原南、北部边缘的喜马拉雅山和昆仑山-西秦岭以北的高原东北部隆升显著加速,经历一系列短暂快速的多幕次构造变形和生长隆升,最终形成现今高原面貌。  相似文献   

12.
Qi  Li  He  JinHai  Zhang  ZuQiang  Song  JinNuan 《科学通报(英文版)》2008,53(1):131-136
Based on analysis of the climatic temperature latitudinal deviation on middle troposphere, its seasonal cycle suggests that due to the rapid warming from eastern China continent to the east of Tibetan Plateau and the heating of Tibetan Plateau in spring, seasonal transition of the thermal difference between East Asia continent and West Pacific first takes place in the subtropical region with greatest intensity. On the accompanying low troposphere, the prevailing wind turns from northerly in winter to southerly in summer with the convection precipitation occurring at the same time. This maybe indicates the onset of the East Asian subtropical summer monsoon. Consequently, we advice that the seasonal cycle formed by the zonal thermal contrast between Asian continent and West Pacific may be an independent driving force of East Asian subtropical monsoon.  相似文献   

13.
Guo ZT  Ruddiman WF  Hao QZ  Wu HB  Qiao YS  Zhu RX  Peng SZ  Wei JJ  Yuan BY  Liu TS 《Nature》2002,416(6877):159-163
The initial desertification in the Asian interior is thought to be one of the most prominent climate changes in the Northern Hemisphere during the Cenozoic era. But the dating of this transition is uncertain, partly because desert sediments are usually scattered, discontinuous and difficult to date. Here we report nearly continuous aeolian deposits covering the interval from 22 to 6.2 million years ago, on the basis of palaeomagnetic measurements and fossil evidence. A total of 231 visually definable aeolian layers occur as brownish loesses interbedded with reddish soils. This new evidence indicates that large source areas of aeolian dust and energetic winter monsoon winds to transport the material must have existed in the interior of Asia by the early Miocene epoch, at least 14 million years earlier than previously thought. Regional tectonic changes and ongoing global cooling are probable causes of these changes in aridity and circulation in Asia.  相似文献   

14.
This paper presents the surface cooling trend observed in spring along East Asia coast after the late 1990s, in contrast to the global warming trend. This surface cooling trend is comprehensible as it agrees well with the cooling of sea surface temperature (SST) in the northwestern Pacific and the weakening of 300 hPa East Asian jet (EAJ) during spring. Moreover, this cooling phenomenon has been shown to be related to the rapid decline of Arctic sea ice cover (SIC) in previous autumns. The Arctic SIC signals in previous autumns can continue in spring and act as enhanced moisture sources that support the increased snow cover in Siberia during spring. The increased Siberian snow cover possibly favors the southward invasion of cold air masses via strong radiative cooling and large-scale descending motion, which may contribute indirectly to the reduction of temperature in East Asia. In addition, three climate models that can reproduce well the East Asian spring surface cooling observed in the past predicted uncertainty in the spring temperature projection in the next decade.  相似文献   

15.
Synchronous drying and cooling in central Asia during late Oligocene   总被引:1,自引:0,他引:1  
Aridification of central Asia during late Oligocene and Early Miocene has been documented by numerous eolian records from the North Pacific and central Asia. However, direct evidence of aridity from the interior of the arid zone is still rather scarce. To better reconstruct the climate history in central Asia during the late Oligocene, we have analyzed ostracod assemblages and gypsum content in the sediments from the lacustrine Jingou River section in the northern Tianshan Mountains. Our results show that the cold water species Candona cf. Neglecta and Pseudocandona albicans replaced the warm water species Ilyocypris bradyi and Ilyocypris sp. to become the dominant species at 23.8 Ma, indicating significant cooling in central Asia at that time. At the same time, a substantial increase in gypsum content indicates the intensification of central Asian drying. The synchronous cooling and drying approximately coincided with the Oi2b.1 and/or Mi1 events, implying a causal linkage between late Oligocene global cooling and central Asian aridity.  相似文献   

16.
利用对铁氧化物矿物灵敏的漫反射光谱法,对临夏盆地的黑林顶剖面(古地磁年代为11.8~5.0Ma)赤铁矿和针铁矿含量进行测定.结果表明:赤铁矿含量在8.6 Ma以前相对较高,在8.6 Ma以后骤然降低并稳定在一低值范围;针铁矿则没有明显的变化趋势,赤铁矿/针铁矿的变化则与赤铁矿的变化趋势一致;赤铁矿、针铁矿含量及其比值在该剖面的变化特征主要反映了8.6 Ma以来亚洲内陆干旱化的加剧,可能与青藏高原在该时期的剧烈隆升密切相关.  相似文献   

17.
The Cenozoic collision between the Indian and Asian continents formed the Tibetan plateau, beginning about 70 million years ago. Since this time, at least 1,400 km of convergence has been accommodated by a combination of underthrusting of Indian and Asian lithosphere, crustal shortening, horizontal extrusion and lithospheric delamination. Rocks exposed in the Himalaya show evidence of crustal melting and are thought to have been exhumed by rapid erosion and climatically forced crustal flow. Magnetotelluric data can be used to image subsurface electrical resistivity, a parameter sensitive to the presence of interconnected fluids in the host rock matrix, even at low volume fractions. Here we present magnetotelluric data from the Tibetan-Himalayan orogen from 77 degrees E to 92 degrees E, which show that low resistivity, interpreted as a partially molten layer, is present along at least 1,000 km of the southern margin of the Tibetan plateau. The inferred low viscosity of this layer is consistent with the development of climatically forced crustal flow in Southern Tibet.  相似文献   

18.
利用耦合的气候模式CESM, 定量研究青藏高原对全球大气温度和水汽分布的影响。通过对比采用真实地形的参考实验(Real)和去掉青藏高原的敏感性实验(NoTibet)发现, 去掉青藏高原会使北半球大气变冷、变干, 对南半球的影响不明显。北半球中高纬度从地表至平流层均有强烈降温, 地表的降温中心在北大西洋, 年平均降温幅度达5ºC, 高空的降温中心在100 hPa的平流层, 年平均降温幅度达2ºC。北大西洋和南亚地区湿度减少, 南大西洋和东非地区湿度增加。北半球变冷主要是海洋向北经向热量输送减少的结果, 一方面增强了北半球的经向温度梯度, 导致Hadley环流增强, 加强了中低纬地区向北的大气热量输送, 部分补偿了海洋向北减少的热量输送, 维持了北半球中低纬度的能量平衡; 另一方面, 使得北半球中高纬度蒸发作用减弱, 大气中水汽含量减少, 北半球变得寒冷干燥。初步的研究表明, 青藏高原对北半球气候有重大影响, 影响范围可达北半球高纬度地区。  相似文献   

19.
Merico A  Tyrrell T  Wilson PA 《Nature》2008,452(7190):979-982
One of the most dramatic perturbations to the Earth system during the past 100 million years was the rapid onset of Antarctic glaciation near the Eocene/Oligocene epoch boundary (approximately 34 million years ago). This climate transition was accompanied by a deepening of the calcite compensation depth--the ocean depth at which the rate of calcium carbonate input from surface waters equals the rate of dissolution. Changes in the global carbon cycle, rather than changes in continental configuration, have recently been proposed as the most likely root cause of Antarctic glaciation, but the mechanism linking glaciation to the deepening of calcite compensation depth remains unclear. Here we use a global biogeochemical box model to test competing hypotheses put forward to explain the Eocene/Oligocene transition. We find that, of the candidate hypotheses, only shelf to deep sea carbonate partitioning is capable of explaining the observed changes in both carbon isotope composition and calcium carbonate accumulation at the sea floor. In our simulations, glacioeustatic sea-level fall associated with the growth of Antarctic ice sheets permanently reduces global calcium carbonate accumulation on the continental shelves, leading to an increase in pelagic burial via permanent deepening of the calcite compensation depth. At the same time, fresh limestones are exposed to erosion, thus temporarily increasing global river inputs of dissolved carbonate and increasing seawater delta13C. Our work sheds new light on the mechanisms linking glaciation and ocean acidity change across arguably the most important climate transition of the Cenozoic era.  相似文献   

20.
Study on two loess sections, one located at Wuwei near the Tengger Desert in northwestern China, another located near Ganzi at the southeast margin of the Tibetan Plateau in southwest China, reveals a coeval drying step occurred at ~250 kaBP. It is expressed by the increase in eolian grain-size at Wuwei, and by a drastic extension of C4 plants and a decrease of loess chemical weathering intensity at Ganzi. Examination of the available eolian data indicates that the event has also been clearly documented in the loess sections near the deserts in northern China, and in the eolian records from the North Pacific. On the contrary, the signal is rather weak for the central and southern Loess Plateau regions as well as for Central Asia, where the climates are influenced by the southeast Asian monsoon and the westerlies, respectively. Since the climate at Ganzi is under strong control of the southwest Asian monsoon, we interpret this drying ste p as a result of decreased influence of the southwest summer monsoon. This decre ase in monsoon moisture is attributable to the uplift of the Hengduan Mountains, the southeast margin of the Tibetan Plateau at~250 ka ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号