首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
Nb2O5对镍基合金激光熔覆层组织的影响   总被引:1,自引:0,他引:1  
为了在钢材表面制备出质量良好、组织细化的镍基合金激光熔覆层,采用激光熔覆技术,在A3钢表面进行了镍基合金粉末添加Nb2O5的熔覆试验.通过对激光熔覆工艺参数及Nb2O5含量的优选得到了质量良好的熔覆层.使用金相显微镜、扫描电镜、电子能谱和X射线衍射仪对熔覆层进行了显微组织和物相分析,并测试了熔覆层显微硬度及摩擦性能.结果表明,当Nb2O5含量为15%,激光功率1.4 kW,扫描速度2 mm/s时,可以获得无裂纹、无气孔且与基底呈冶金结合的质量良好的熔覆层.Nb2O5的加入既提高了镍基合金熔覆层中的强化相比例,又细化熔覆层的组织,抑制粗大针状脆性硬质相的形成,降低熔覆层的裂纹敏感性.Nb2O5/Ni60激光熔覆层的硬度虽然降低,但耐磨性比纯Ni60提高约一倍.  相似文献   

2.
采用激光熔覆技术,在45#钢表面进行了镍基合金粉末添加碳纳米管的熔覆试验,对熔覆层横截面进行了硬度测试和显微组织分析,对熔覆层表面进行了X射线衍射物相分析和摩擦磨损试验.结果表明,碳纳米管能够提高镍基合金激光熔覆层的硬度和耐磨性能,当碳纳米管的质量分数为0.4%时,镍基合金激光熔覆层的耐磨性能最好.  相似文献   

3.
为了实现表面损伤叶轮的再制造,提出了叶轮激光熔覆增材再制造流程,并利用激光熔覆技术在叶轮材料试样表面进行Fe基粉末熔覆实验;叶轮再制造流程主要包括设备拆解、清洗、检测、再制造加工、零件测试、装配、喷涂包装等;激光熔覆实验表明粉末与基体产生了良好的冶金结合,组织致密且无未熔化粉末颗粒,熔覆层硬度达到625.7 HV,约为基体材料硬度的1.57倍,屈服强度为641 MPa;激光熔覆再制造叶轮经着色探伤检测和工业CT检测等显示再制造熔覆区域无裂纹、气孔等质量问题,采用去重式平衡,动不平衡量小于标准值750 g.mm,叶轮安装调试一次成功,各项指标满足要求。  相似文献   

4.
结晶器铜板上激光熔覆镍基合金   总被引:4,自引:3,他引:1  
利用5kWCO2激光器在结晶器铜板上熔覆镍基合金,并研究了熔覆层组织性能.选用与结晶器铜板成分相近的镍基自熔合金粉末Nickel-baseHMSP1015-00(Ni1015),利用等离子喷涂技术在铜板上预涂Ni1015合金,然后再采用高能量密度激光进行重熔.借助OM,SEM和显微硬度计分析测定了涂层的显微组织形貌、组织成分和截面显微硬度分布情况.所得到的熔覆层表面平整均匀,与基体为冶金结合;熔覆层平均显微硬度为270HV0.05,是基体的3.2倍(85HV0.05).确定出本实验合适的激光熔覆工艺参数功率密度为1.58×102kW/cm2时,扫描速度为3~4m/min.  相似文献   

5.
在304不锈钢外圆表面使用激光熔覆镍基氧化锆金属陶瓷粉末,对激光工艺参数进行优化,制备工艺性能良好的熔覆层.研究了激光工艺参数对熔覆层宏观形貌、显微组织和硬度分布的影响.结果表明:激光功率为1.5 kW时为佳;随扫描速度增大,熔覆层的组织有细化的趋势;通过优化扫描速度,可得到显微硬度值较高,且沿熔覆层表面的垂直方向的硬度分布变化不大的熔覆涂层.  相似文献   

6.
Q235钢表面激光熔覆Cr_7C_3的性能研究   总被引:1,自引:0,他引:1  
茅美红 《科技信息》2012,(5):111-112,133
利用激光熔覆技术将摩尔比为91:9的Cr、C合金粉末制备于Q235钢表面。采用光学显微镜、x射线衍射仪、扫描电子显微镜和硬度分析仪分析熔覆层的显微组织结构及截面的显微硬度。试验结果表明,当激光功率为2500W和扫描速度为2.5mm/s时,熔覆层与基体的冶金结合较好,同时可获得无裂纹、无孔洞且表面平整的涂层。  相似文献   

7.
在低硅钢表面激光熔覆Fe-Si粉末制备高硅熔覆层,研究了激光扫描速度对熔覆层宏观形貌、相组成、显微组织、成分及硬度分布等的影响.结果表明,不同扫描速度条件下熔覆层表面均由-αFe(Si),-γFe(Si)和FeSi2组成;随扫描速度增大,熔覆层的组织有细化的趋势,组织不均匀性得到改善;同时,熔覆层厚度减小,导致稀释率减小,使熔覆层平均硅含量提高,显微硬度提高.通过调整激光扫描速度,获得了无裂纹缺陷,且与基体呈良好冶金结合的熔覆层,最佳扫描速度为2.5 mm/s.  相似文献   

8.
针对提高20Cr13不锈钢的表面性能,采用激光熔覆技术在基体表面制备M2铁基和Ni60A镍基合金熔覆层;通过使用光学显微镜、显微硬度计以及电化学工作站对两种熔覆层进行金相组织、显微硬度和电化学腐蚀性能差异性研究;结果表明:铁基、镍基熔覆层与基体结合界面均有明显的白亮带,无气孔、裂纹等缺陷;铁基涂层微观组织主要由等轴晶和胞状晶组成,镍基涂层微观组织主要由和树枝晶组成;铁基涂层的显微硬度为5417 HV,镍基涂层的显微硬度为5923 HV,约为基体显微硬度(2207 HV)的2~3倍;铁基、镍基涂层均与20Cr13钢基体表面形成了较好的冶金结合,二者表面硬度均有了有显著提升,在熔覆区采用Ni60A镍基材料时的显微硬度要比采用M2铁基材料时的显微硬度高,而在热影响区部位两者显微硬度相差不大;铁基涂层的自腐蚀电位(-021 V)略高于镍基涂层的自腐蚀电位(-023 V),铁基涂层的耐腐蚀性优于镍基涂层。  相似文献   

9.
针对提高20Cr13不锈钢的表面性能,采用激光熔覆技术在基体表面制备M2铁基和Ni60A镍基合金熔覆层;通过使用光学显微镜、显微硬度计以及电化学工作站对两种熔覆层进行金相组织、显微硬度和电化学腐蚀性能差异性研究;结果表明:铁基、镍基熔覆层与基体结合界面均有明显的白亮带,无气孔、裂纹等缺陷;铁基涂层微观组织主要由等轴晶和胞状晶组成,镍基涂层微观组织主要由和树枝晶组成;铁基涂层的显微硬度为541.7 HV,镍基涂层的显微硬度为592.3 HV,约为基体显微硬度(220.7 HV)的2~3倍;铁基、镍基涂层均与20Cr13钢基体表面形成了较好的冶金结合,二者表面硬度均有了有显著提升,在熔覆区采用Ni60A镍基材料时的显微硬度要比采用M2铁基材料时的显微硬度高,而在热影响区部位两者显微硬度相差不大;铁基涂层的自腐蚀电位(-0.21 V)略高于镍基涂层的自腐蚀电位(-0.23 V),铁基涂层的耐腐蚀性优于镍基涂层。  相似文献   

10.
碳钢表面激光熔覆镍基合金涂层及其高温磨损行为   总被引:3,自引:0,他引:3  
应用激光熔覆法,采用镍基NiCrSiB合金粉末,在20#碳钢表面制备了熔覆涂层.利用X射线衍射仪分析熔覆层的相组成;利用摩擦磨损实验机对熔覆层的高温耐磨性能进行了研究;利用扫描电镜观察熔覆层形貌.结果表明:所制得熔覆层组织均一、致密,与基体形成了良好的冶金结合.镍基合金激光熔覆层硬度提高到基体的4倍;高温磨损率约为基体的1/3.熔覆层耐磨能力增强的主要原因在于熔覆层与基体良好的冶金结合,固溶强化和硼化物、硼碳化物等析出相的强化作用.  相似文献   

11.
采用IPG-YLS-5000光纤激光器在Cu-Cr-Zr合金表面制备了Ni60+WC合金熔覆层。利用扫描电子显微镜、X射线衍射仪等分析手段对熔覆层的微观组织、界面成分、物相组成、硬度及耐磨性进行表征和测试,得到了工艺参数对稀释率的影响规律。结果显示,提高激光功率和激光扫描速率均可以增加稀释率。当WC含量较少时,WC颗粒全部熔解;当WC含量较多时,存在未熔解的WC颗粒相。随着WC含量的增加,熔覆层组织先粗化后细化,枝晶间分布有颗粒相。熔覆层的硬度和耐磨性远高于基体,并随着WC含量的增加而增加,熔覆层的硬度最高可达1 000 HV。随着WC含量的增加,熔覆层的磨损失重逐渐变小,与铜合金相比,当WC的含量达到20%时,磨损失重仅为1.1 g。  相似文献   

12.
通过对高磷铸铁表面进行以镍基合金粉末为主的激光合金化处理,调整铸铁表面层中的成分、组织与结构,探讨激光表面合金化层的硬度与耐磨性.实验结果表明,在激光功率为1.5kW,扫描速度为5mm/s时,镍铬硼硅粉末能很好地溶于基材之中,形成明显的合金层与过渡区,溶入的合金元素大多以化合物或固溶体的形式存在,合金层与基材结合良好,未见宏观及微观裂纹,表面硬化层的硬度值大幅度提高,并使耐磨性提高5~7倍.  相似文献   

13.
利用10kW的CO2激光器在409L铁素体不锈钢表面激光熔覆w(Mo2C)=20%的Mo2C/Co基涂层,运用SEM、EDS、XRD及显微硬度仪观察和分析激光功率和扫描速度对熔覆层成型性、尺寸、组织及性能的影响.结果表明:激光熔覆合理的工艺参数为:P=3.6kW,v=8mm/s;钴基熔覆层组织由平面晶、柱状晶、树枝晶构成,熔覆层中物相主要为Mo2C颗粒、亚共晶γ-Co和共晶碳化物Cr23C6、Cr7C3;由于Mo2C颗粒加入,凝固组织的晶粒尺寸减小、晶粒细化,涂层的显微硬度从870HV提高至1 400HV.  相似文献   

14.
为了研究激光熔覆高硬度涂层生成机理,采用自配的合金粉末,利用宽带熔覆技术,对4Cr5W2SiV报废模具进行了成功修复。利用OM、XRD、显微硬度计对熔覆层的组织结构及硬度进行了研究,并且对硬度的生成机理进行了分析。结果表明,模具修复效果良好,熔覆层较基材有较高的硬度。细晶强化、固溶强化、第二相强化与激光技术的快冷快热特点是生成高硬度涂层的本质原因。  相似文献   

15.
将传统CO2气体保护焊与喷射送粉法复合,在Q235碳钢表面堆焊Fe-C-Cr-BNi系合金,研究了Ni元素含量变化对堆焊层组织和硬度的影响.利用金相显微镜观察堆焊层组织,结合EDS、XRD分析堆焊层的相成分,采用洛氏硬度计测试堆焊层表面的硬度.研究结果表明:堆焊层由马氏体、奥氏体以及(Fe,Cr)7C3和(Fe,Cr)2B硬质化合物组成.堆焊层熔合区由固溶体组成,过热区晶粒粗大,母材区组织均匀.堆焊层的HRC值范围为51.1~56.5,随着Ni含量的增加,堆焊层的硬度缓慢降低.  相似文献   

16.
9SiCr工具钢表面激光熔覆合金的组织与性能   总被引:1,自引:1,他引:1  
使用CO2激光器对9SiCr工具钢表面进行Co基和Ni基合金熔覆处理,X射线衍射仪、扫描电子显微镜分析了激光合金熔覆层的相组成和显微组织;显微硬度计对合金熔覆区的显微硬度进行测量·结果表明,合金熔覆层在微观结构上存在熔覆区、结合区和基体热影响3个区域·Co基合金熔覆区相组成为奥氏体+铁素体+碳化物,Ni基合金熔覆区相组成为奥氏体+铁素体+碳化物+金属间化合物·Ni基合金熔覆层的显微硬度约为Co基的2倍  相似文献   

17.
为了解决316L不锈钢激光熔覆层成形差、耐腐蚀性低的问题,采用显微组织观察、硬度实验、常温冲击及电化学测试等试验方法,对不同激光功率下熔覆单层及多层熔覆层的成形、组织及性能进行检测和分析。结果表明,随着激光功率的增大,熔覆层高度呈现先增加后减小的变化趋势,熔覆层内部析出相的含量以及稀释率则呈现上升趋势;激光功率过小易引起熔覆层开裂,过大则会引起熔覆层晶粒异常长大;随着激光功率的增加,熔覆层硬度呈增大趋势,当激光功率达到450 W时,熔覆层与基材结合界面处硬度值达到最大,为475 HV;而熔覆层的冲击性能和耐腐蚀性能则随着激光功率的增大呈现下降趋势,当激光功率为300 W时,其冲击韧性最大为92 J,且熔覆层具有最优的耐腐蚀性能,腐蚀电位Ecorr最高为-0.3 V,且腐蚀电流密度Icorr最小为0.165 A/cm2;因此,当熔覆速率为3 mm/s、送粉速率为14 g/min、搭接率为50%时,采用300 W激光功率制备的熔覆层可得到优异的冲击和耐腐蚀性能。研究结果可为316L激光熔覆层工艺调控及性能改善提供参考。  相似文献   

18.
采用等离子粉末堆焊工艺在316H不锈钢表面堆焊Tribaloy® T400 (T400) 合金涂层,研究焊接时不同焊接热输入对堆焊件表面形貌、成分、维氏硬度、摩擦因数以及磨损质量的影响。结果表明:当焊接热输入为840 J/mm时,堆焊件表面没有明显的缺陷,维氏硬度以及耐磨性能达到最佳,且Cr元素含量最低;对316H不锈钢和堆焊件的磨损机制进行研究发现,316H不锈钢的磨损机制主要为剥层磨损,伴随有少量氧化磨损,堆焊件的磨损机制主要为磨粒磨损,伴随有黏着磨损。对焊接热输入为840 J/mm的堆焊件在700 ℃的环境中进行时效实验,堆焊件的维氏硬度随着时效时间的延长而增大,堆焊件经1000 h时效后,维氏硬度由原来的528增加到602,堆焊层具有较高的高温力学稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号