首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
本文考虑了如下的一类平面四次复Lotka-Volterra系统的可线性化问题=x(1-a30x3-a21x2y-a12xy2-a03y3),=-y(5-b30x3-b21x2y-b12xy2-b03y3).该系统为四次齐次多项式扰动下的具有$1:-5$线性项的复Lotka-Volterra系统,给出了该系统可线性化的充分必要条件.  相似文献   

2.
线性交换子的加权估计   总被引:2,自引:2,他引:0  
 多线性交换子Tb(f)(x)=∫Rni=1m(bi(x)-bi(y))k(x,y)f(y)dyLp(Rn)(1K是一个标准的Calderón-Zygmund核.主要研究交换子Mf(x)=supx∈QQ|f(y)|dy,其中fLloc(Rn),xRn,Q是任何包含x的方体,并用Sharp极大估计得到了该多线性交换子在Herz空间的一个加权有界性.  相似文献   

3.
在合理确定钢和混凝土本构模型基础上,运用有限元数值分析软件ABAQUS模拟典型圆端形钢管混凝土双向偏压柱的荷载-变形曲线,开展工作机理分析. 分析结果显示: 在双向偏压荷载作用下,圆端形钢管混凝土柱能表现出较高的极限承载力和延性;钢管对核心混凝土可起到有效约束作用,圆弧段钢管对混凝土的约束效应高于平直段钢管. 典型算例表明,圆端形钢管混凝土双向偏压柱的Mx/Mux-My/Muy相关曲线呈四分之一椭圆形. 最后提出该类双向偏压柱承载力的简化计算式,与有限元模拟结果对比,简化计算结果偏于保守.  相似文献   

4.
以松木为模板,使用模板法制备了不同铈锆含量的CexZr1-xO2复合氧化物的催化剂,用于餐饮废油与甲醇进行酯交换反应合成生物柴油.采用BET、SEM对CexZr1-xO2进行表征分析.研究不同制备方法、CeO2的负载量和煅烧温度对催化剂活性的影响,以及不同的酯交换反应条件对生物柴油产率的影响.制备的CexZr1-xO2具有松木的生物形态,并有助于催化剂形成多孔道结构.以CexZr1-xO2为催化剂,考察甲醇和餐饮废油的酯交换反应.结果表明:当x=0.5,煅烧温度为600℃时,甲醇与餐饮废油物质的量比为60:1,催化剂用量(基于餐饮废油的质量)的质量分数为5%,反应温度为190℃,反应时间为6 h的反应条件下,酯交换反应的甲酯收率达到91.1%.  相似文献   

5.
以钽酸锶同素异质结Sr2Ta2O7/SrTa4O11(STO)为原始材料,采用高温氨化法对原始材料做氮掺杂改性处理,得到了新型氮掺杂钽酸锶同素异质结材料Sr2Ta2O7-xNx/SrTa4O11-xNx(STO-N),并对其光电催化性能进行研究。结果显示,对比改性前的STO,STO-N具有更强的可见光吸收能力。紫外可见漫反射光谱证明,氮掺杂使得STO的吸收阈值从319 nm红移到485 nm,相应的带隙由3.97 eV减小到2.51 eV,这主要是由于N 2p和O 2p轨道的混合作用导致价带顶部上移。性能测试结果表明:STO-N20的光电催化性能提升最为显著,在施加0.7 V偏压下,STO-N20电极测得的光电流密度达到了570 nA/cm2,是STO电极的光电流密度(8.6 nA/cm2)的66倍。根据推算出的STO及STO-N20的能带结构可知,STO-N20性能提升的原因是禁带宽度变窄。  相似文献   

6.
以松木屑为模版,制备了La2O3-CexZr1-xO2复合氧化物,用于催化餐饮废弃油合成生物柴油的酯交换反应。采用BET比表面积分析仪、扫描电子显微镜(SEM)对La2O3-CexZr1-xO2进行表征。研究不同制备方法对催化剂活性的影响,分析不同的反应条件对酯交换反应产率的影响。结果表明:当反应条件为x=0.5,催化剂量为餐饮废油质量的5%,甲醇与餐饮废油物质的量的比为54:1时,在165℃下反应4.5 h左右,酯交换反应获得生物柴油的产率为91.1%。  相似文献   

7.
为了解决电解水析氢过程中所用贵金属材料的高昂成本问题,采用水热-低温磷化法制备了一种低廉、环保、高效的析氢催化剂FexNi1-x-P。与传统制备方法比较,该方法在水热合成前驱体过程中,利用镍盐和铁盐与无水乙醇发生氧化还原反应,生成的OH-可以沉淀金属离子,随后前驱体与NaH2PO2低温磷化制得FexNi1-x-P。通过研究发现,Fe0.5Ni0.5-P电极材料表现出优异的催化活性。在1.0 mol·L-1 KOH溶液中,电流密度为10 mA·cm-2时,电极Fe0.5Ni0.5-P需要的过电位仅为113 mV,1 000圈循环伏安测试后,极化曲线无明显衰减。提供了一种制备FexNi1-x-P的简便方法,为开发清洁能源系统的环境友好型催化剂提供了新思路。  相似文献   

8.
根据催化氧化原理,利用4A分子筛为载体,次氯酸钠(NaClO)为氧化剂,通过硫酸锰(MnSO4)在其表面的原位氧化来制备对环境无害的锰氧化物(MnOx)改性的分子筛(MnOx@MS)材料.通过场发射扫描电镜(FE-SEM)和X射线衍射(XRD)对材料进行了表征.XRD分析表明:Mn元素是以MnOx形式存在,在pH为7.2时,反应得到的MnOx中Mn离子的价态最高.测试表明:Mn离子的价态越高对含酚废水的处理效果就越好.采用在最优条件下得到的MnOx@MS材料作为催化剂,对过氧化氢(H2O2)氧化降解含酚废水进行研究,考察了不同体系、温度、pH值和H2O2用量对苯酚降解的影响.结果表明:在优化的降解条件下,120 min内,未改性分子筛对苯酚的去除率仅为35%,而MnOx@MS改性材料对苯酚的去除率达到82%,说明通过MnOx改性后的分子筛,对苯酚的氧化降解能力大大提高.  相似文献   

9.
以钡镍元素共掺形成的铌酸钾-铌镍酸钡薄膜(1-x)KNbO3-xBaNi0.5Nb0.5O3-δ(KN-xBNNO)为主要研究对象,围绕其材料发展趋势:高质量铌酸钾-铌镍酸钡薄膜材料的关键制备技术、铌酸钾-铌镍酸钡薄膜的微结构、元素化合价和拉曼声子模式等内容进行了研究.  相似文献   

10.
确定椭圆曲线的有理点(尤其大整数点)是数论与算术代数几何中十分有趣的问题。尤其椭圆曲线在密码学等方面的应用中,针对不同的情况,需要构造不同的椭圆曲线。本文在这类椭圆曲线y2=(x+a)(x2-ax+p)中找到了一族有大整数点的椭圆曲线。同时得到了这族椭圆曲线有整数解的充要条件,且给出了8条椭圆曲线的大整数点。  相似文献   

11.
CO-Fe3O4磁性流体磁性能的研究   总被引:3,自引:0,他引:3  
制备了以超细 Co、Fe3O4微粒为基体材料的磁性液体。考察了磁微粒粒径、表面活性剂等因素对其磁性能的影响 ,用正交实验优化了制备工艺条件 ,对磁性液体的磁化强度进行了测试。结果表明 Co-Fe3O4磁性液体的磁性能主要由磁微粒粒径、磁微粒含量及活性剂量决定。  相似文献   

12.
综述了磁记录的几种记录模式的特点、磁记录介质和磁头材料的种类、性能以及对它的要求;同时简述了磁记录的工作原理和目前国内外的研究现状和前景;最后介绍了磁性薄膜介质的厚度、晶体结构、形貌、成分和磁性能等主要参数的测量方法。  相似文献   

13.
本文在恒温下测定了稀土元素Ce(Ⅲ)和Pr(Ⅲ)络合物混合溶液的磁化率,得出两种络合物在溶液中的磁矩,讨论了磁化率与溶液中两种离子摩尔比的关系.  相似文献   

14.
室温磁致冷技术尚处于样机研制阶段,仿真分析可以简化该过程。借助有限元分析工具计算磁场分布,并将工质细化然后结合磁工质材料磁热特性计算工质微元完整循环中的热量变化,最后求和近似得到磁致冷装置的整体运行特性。针对一种简化室温磁致冷原理样机的Ericsson循环制冷过程进行详细的计算。仿真结果表明提高循环的制冷温跨可增大总回热量,但是制冷效率将会降低。该方法有助于综合评定室温磁致冷装置的设计效果、指导室温磁致冷机的研制过程。  相似文献   

15.
主要介绍为获得高品位磁铁矿精矿而研制的一种新型磁选设备──磁选柱,简要介绍了该设备的结构、分选原理、磁场特性以及实际应用效果。  相似文献   

16.
磁传递力矩的简化计算方法   总被引:1,自引:0,他引:1  
对磁力矩计算公式进行无量纲参数化处理,使公式简单,直观,使用方便。  相似文献   

17.
基于磁编码器多极磁鼓表露场分布的均匀磁化理论模型,采用数值分析方法计算磁编码器多极磁鼓的表露场分布,得到了多极磁鼓的表露场分布的数值表达式.  相似文献   

18.
以戊二醛为交联剂、Fe3O4为磁核,采用反相悬浮交联技术合成了磁性壳聚糖微球,并利用数码光学显微成像仪、激光粒度仪、傅立叶红外光谱对磁性微球的形态、大小和化学结构进行了表征,采用原子吸收分光光度仪、磁天平和可调磁场对其磁响应性进行了研究.结果表明:所合成的磁性壳聚糖微球粒径在50~200μm之间,基本呈圆球形,表面比较光滑,且内部均匀分布着磁性介质Fe3O4;当磁性微球粒径小于280μm时,在外加磁场作用下,微球的磁化率与沉降速度都随着微球粒径的增大而增大.这表明所制备的磁性壳聚糖微球具有良好的磁响应性.  相似文献   

19.
基于静磁场理论,建立了磁编码器多极磁鼓的表露场分布均匀磁化模型,得到了磁编码器多极磁鼓的表露场分布表达式,为多极磁鼓的参数优化设计提供了理论依据.  相似文献   

20.
文中导出了任意形状空间的载流线圈磁矩的计算公式及其在均匀磁场中所受磁力矩的计算公式,结果表明本文的结论与电磁不理论的有关知识是相全的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号