首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 296 毫秒
1.
脉冲涡流检测中参数影响的仿真分析与实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
脉冲涡流检测过程中传感器尺寸及激励参数对检测结果影响较大,对其进行优化设计可提高检测系统的性能。在分析矩形脉冲涡流传感器工作原理的基础上,采用ANSYS仿真软件建立了脉冲涡流的仿真模型,仿真分析了传感器尺寸变化对铝板中涡流衰减规律的影响,激励脉冲频率和占空比变化对缺陷检测灵敏度的影响,仿真结果表明:当激励线圈长度增加时,涡流在铝板中的衰减速度变慢,而当激励线圈宽度和高度增加时,涡流在铝板中的衰减速度变快;激励频率与占空比对缺陷检测灵敏度的影响与被测试件厚度有关,对于厚度较大的板材,应适当降低激励频率并提高占空比。最后采用实验的方法对仿真结果进行了验证,实验与仿真结果相一致,证明了仿真结论的正确性。  相似文献   

2.
脉冲涡流(PEC)检测技术是近年发展起来的新型无损检测技术,可以进行金属板材或金属设备的厚度测量,具有频谱宽、信号穿透能力强及精确度高等优点.文中建立了脉冲涡流测厚系统的有限元分析模型,仿真分析脉冲涡流探头参数对金属测厚的影响,包括激励和检测线圈的高度、厚度、内径、匝数等,从而为脉冲涡流检测设备的国产化研究和提高精度提供理论依据.  相似文献   

3.
基于新型脉冲涡流传感器的裂纹缺陷定量检测技术   总被引:1,自引:0,他引:1       下载免费PDF全文
传统脉冲涡流检测技术采用反射型传感器,其通过一个圆柱形的激励线圈来产生激励磁场,采用检测线圈或霍尔传感器来检测扰动磁场,然而由于激励磁场要比缺陷引起的扰动磁场强很多,使得这种结构的传感器对缺陷的检测灵敏度不高,需采用差分的方法来增强缺陷信息.提出了一种新型脉冲涡流传感器,其通过采用矩形激励线圈来改变激励场的空间分布,使得无需差分就可以对缺陷进行定量.在分析该新型脉冲涡流传感器检测原理的基础上,采用仿真和实验相结合的方法研究了其对裂纹缺陷长度和深度进行定量的效果,仿真与实验结果相一致,证明了该传感器的有效性.  相似文献   

4.
为提高脉冲涡流检测技术在检测包覆层下铁磁性金属管道局部腐蚀时的灵敏度,从仿真和实验两个方面对探头设计进行了研究.采用反向联接结构的双线圈作为激励源,达到线圈电流不过大而磁场能够在局部得到聚焦增强的目的.采用有限元仿真比较了单线圈和双线圈激励时磁场及涡流的分布情况和对局部腐蚀型缺陷的检测灵敏度,并进行了系列检测对比实验.仿真与实验结果相一致,表明使用反向联接双线圈激励探头对带包覆层管道局部腐蚀类缺陷进行脉冲涡流检测可以达到远高于单线圈激励检测的灵敏度.本研究可为带包覆层金属管道局部腐蚀的脉冲涡流检测探头设计提供参考.  相似文献   

5.
脉冲涡流(PEC)检测技术是近些年来发展起来的新型无损检测技术,具有频谱宽、信号穿透能力强以及精确度高等优点.实验对脉冲涡流测厚系统建立了有限元分析模型,仿真分析检测线圈上电压的衰减规律,通过改变被测体厚度,分析了检测线圈上的电压随被测体厚度的变化规律和定量关系.实验最终给出检测线圈电压与被测体厚度关系的数学模型,并为将来进行脉冲涡流测厚仪的研制提供理论依据.  相似文献   

6.
脉冲激励信号包含非常丰富的频谱成分,以脉冲激励代替传统的正弦激励为克服远场涡流技术的不足提供了新的解决途径。在分析了脉冲激励下远场涡流检测机理的基础上,仿真分析了激励线圈和管道周围磁场和涡流的分布,得到了检测线圈处于不同场区时瞬态检测信号的变化规律,确定了远场区的范围。并从检测信号中提取了过零时间作为缺陷定量的特征量。最后,采用实验的方法验证了脉冲激励下的远场涡流技术对管道中轴向裂纹缺陷长度和深度的定量检测能力,实验结果表明该技术可以很好的实现对缺陷的定量评估。  相似文献   

7.
针对传统的管道变形内检测探头环向检测面积较小的问题,在磁旋转编码检测技术的基础上,结合电涡流检测技术,研制了一种涡流变形内检测探头。文中首先介绍了电涡流管道变形检测的理论基础,设计了管道涡流变形检测探头的机械结构及电路系统,利用有限元方法得到探头与被测件距离d的增加引起传感器输出电压峰值信号呈现非线性减小的变化规律,同时研究了激励信号峰值和激励线圈内径变化对d值检测的影响。后进行实验验证,结果表明基于电涡流检测技术的管道变形检测具有可行性,实验测量精度达到1mm。该检测探头的研制对于提高管道变形内检测环向检测精度、降低检测成本具有一定的意义。  相似文献   

8.
在脉冲涡流检测过程中,由于探头倾斜或被测对象表面不光滑会产生提离效应,提离效应严重影响着脉冲涡流无损检测的结果。本文在分析脉冲涡流检测技术工作原理的基础上,采用ANSYS有限元仿真软件建立了激励线圈为圆柱形和矩形两种结构的模型,并分别针对有裂纹缺陷的铁磁性(钢)和非铁磁性(铝)试件进行了仿真研究,通过分析试件中感应涡流和扰动磁场的变化,给出了不同情况下检测信号随提离变化的规律,并从原理上给出了解释。最后,通过实验的方法对仿真结果进行了验证,实验结果表明了仿真结果的正确性,从而为进一步的消除提离效应提供了有价值的参考依据。  相似文献   

9.
将磁场梯度测量技术和脉冲涡流检测技术有效融合,集中探究基于脉冲涡流磁场梯度信号的亚表面腐蚀缺陷成像手段及其优势性。首先,采用三维有限元仿真分析了脉冲涡流磁场梯度信号在亚表面腐蚀缺陷成像中的有效性和优势性,模拟仿真结果显示磁场梯度信号对于缺陷边缘的检测具有优势。基于模拟仿真结果,搭建了一套脉冲涡流检测实验系统,通过成像实验比较了基于两类信号的亚表面腐蚀缺陷扫描结果,并进一步研究了该类缺陷的成像技术。成像结果表明采用磁场梯度信号可实现对缺陷边缘的高效成像,基于磁场梯度测量的脉冲涡流检测技术较传统脉冲涡流检测技术,具有高效、高灵敏度的优势。  相似文献   

10.
针对航空铝合金试件体积较大的问题,建立了阵列式脉冲涡流探头有限元仿真模型,根据脉冲涡流趋肤效应及能量分布原理,设计了MAX038仿真模型产生激励信号并加载于阵列线圈上,通过优化线圈参数实现了试件缺陷的定量检测.结果表明,仿真模型激励信号加载于线圈上生成的磁场分布,与模拟激励相似但更接近实际情况.优化后的线圈提高了缺陷识...  相似文献   

11.
介绍了一种共享式多探头涡流检测系统。利用涡流探伤仪的一个励磁信号源同时长距离驱动多个检测探头,与励磁信号源对应的信号处理通道对多路检测信号进行巡回处理,可大大提高系统效率,减少系统结构的复杂性。该系统的检测灵敏度、信噪比和探头间隔离度均满足实际检测需要,可作为标准涡流检测系统的通道扩展接口使用。实际应用于抽油杆的无损探伤,效果较好  相似文献   

12.
脉冲远场涡流检测方法结合了脉冲检测频率丰富以及远场方法适于铁磁性管道检测的优势,因此文中采用脉冲远场技术对管道轴向裂纹进行了检测。首先分析了脉冲远场涡流的检测原理,通过提取感应电压信号的负峰值和过零时间作为特征量可以分析管道的检测信息,在此基础上设计了4种不同结构的传感器模型,比较了4种模型过渡区的远近、对轴向裂纹检测灵敏度的高低以及对不同壁厚管道检测的结果。仿真结果表明:与其它模型相比,连通激励磁路的传感器模型具有更好的检测效果。  相似文献   

13.
恶劣复杂的服役环境致使航空金属结构极易出现亚表面腐蚀等缺陷,严重影响结构完整性。作为一种结合匀场激励的新型脉冲涡流检测方法,磁场梯度脉冲涡流检测已在结构腐蚀缺陷检测和评估方面体现了其优势性。针对所获取亚表面腐蚀缺陷图像信息不够丰富等不足,结合积分计算对所获图像进行进一步处理,提取图像新特征,研究其与亚表面腐蚀缺陷深度间的映射关系。研究结果表明:该图像新特征与亚表面腐蚀缺陷深度呈单调递增关系;综合由此建立的关联曲线和已获取的亚表面腐蚀缺陷图像,可对金属结构亚表面腐蚀缺陷的深度、形貌、开口尺寸等进行定量评估。  相似文献   

14.
脉冲涡流检测是无损检测的一个重要方法.由于检测过程噪声的干扰,信号在测量过程中不可避免的受到不同程度的污染.文章介绍了提升小波的基本原理、阐述了提升小波去噪的算法.利用提升小波对脉冲涡流检测过程中的噪声进行去噪,得到了去噪后的结果波形.实验结果表明,采用提升小波去噪可以使脉冲涡流检测结果信号的信噪比得到显著的提高.  相似文献   

15.
提出并设计了一种基于分形理论自相似结构的科赫雪花图形激励装置的涡流传感器,利用COMSOL多物理场仿真软件进行了计算分析,在此基础上搭建实验平台并进行了实验验证.结果表明,与采用经典的圆形线圈激励方式相比,以科赫雪花图形为激励装置的涡流传感器,能有效提高局部涡流能量密度,改善涡流分布形态,从而提高对微小裂纹缺陷检测的灵敏度.实验表明所研制的新型平面结构涡流传感器,可以制作用于柔性阵列传感器,并能为结构健康监测中提供监测数据.   相似文献   

16.
在对带保温层管道进行检测时,由于保温层的隔离作用使得传统的电磁无损检测方法感生的磁场在传播到管道表面时已衰减的非常微弱,因此,对带保温层管道中腐蚀缺陷的检测是无损检测领域的一个难点.脉冲漏磁方法由于结合了脉冲检测频率丰富以及漏磁检测适于铁磁性管道检测的优势,因而采用脉冲漏磁技术对管道腐蚀缺陷进行了检测.在分析了脉冲漏磁检测原理的基础上,仿真分析了4种不同结构的脉冲漏磁传感器沿管道表面和管壁的磁场分布以及对不同厚度保温层的检测能力,仿真结果表明带聚磁板的模型具有较好的检测能力.最后,采用实验的方法研究了这种模型传感器对腐蚀缺陷深度的定量能力,实验结果表明该传感器可以很好地实现对腐蚀缺陷深度的定量检测.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号