首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Induction of visual orientation modules in auditory cortex   总被引:13,自引:0,他引:13  
Sharma J  Angelucci A  Sur M 《Nature》2000,404(6780):841-847
Modules of neurons sharing a common property are a basic organizational feature of mammalian sensory cortex. Primary visual cortex (V1) is characterized by orientation modules--groups of cells that share a preferred stimulus orientation--which are organized into a highly ordered orientation map. Here we show that in ferrets in which retinal projections are routed into the auditory pathway, visually responsive neurons in 'rewired' primary auditory cortex are also organized into orientation modules. The orientation tuning of neurons within these modules is comparable to the tuning of cells in V1 but the orientation map is less orderly. Horizontal connections in rewired cortex are more patchy and periodic than connections in normal auditory cortex, but less so than connections in V1. These data show that afferent activity has a profound influence on diverse components of cortical circuitry, including thalamocortical and local intracortical connections, which are involved in the generation of orientation tuning, and long-range horizontal connections, which are important in creating an orientation map.  相似文献   

2.
Foci of orientation plasticity in visual cortex   总被引:5,自引:0,他引:5  
Dragoi V  Rivadulla C  Sur M 《Nature》2001,411(6833):80-86
Cortical areas are generally assumed to be uniform in their capacity for adaptive changes or plasticity. Here we demonstrate, however, that neurons in the cat striate cortex (V1) show pronounced adaptation-induced short-term plasticity of orientation tuning primarily at specific foci. V1 neurons are clustered according to their orientation preference in iso-orientation domains that converge at singularities or pinwheel centres. Although neurons in pinwheel centres have similar orientation tuning and responses to those in iso-orientation domains, we find that they differ markedly in their capacity for adaptive changes. Adaptation with an oriented drifting grating stimulus alters responses of neurons located at and near pinwheel centres to a broad range of orientations, causing repulsive shifts in orientation preference and changes in response magnitude. In contrast, neurons located in iso-orientation domains show minimal changes in their tuning properties after adaptation. The anisotropy of adaptation-induced orientation plasticity is probably mediated by inhomogeneities in local intracortical interactions that are overlaid on the map of orientation preference in V1.  相似文献   

3.
Inhibitory interneurons are essential components of the neural circuits underlying various brain functions. In the neocortex, a large diversity of GABA (γ-aminobutyric acid) interneurons has been identified on the basis of their morphology, molecular markers, biophysical properties and innervation pattern. However, how the activity of each subtype of interneurons contributes to sensory processing remains unclear. Here we show that optogenetic activation of parvalbumin-positive (PV+) interneurons in the mouse primary visual cortex (V1) sharpens neuronal feature selectivity and improves perceptual discrimination. Using multichannel recording with silicon probes and channelrhodopsin-2 (ChR2)-mediated optical activation, we found that increased spiking of PV+ interneurons markedly sharpened orientation tuning and enhanced direction selectivity of nearby neurons. These effects were caused by the activation of inhibitory neurons rather than a decreased spiking of excitatory neurons, as archaerhodopsin-3 (Arch)-mediated optical silencing of calcium/calmodulin-dependent protein kinase IIα (CAMKIIα)-positive excitatory neurons caused no significant change in V1 stimulus selectivity. Moreover, the improved selectivity specifically required PV+ neuron activation, as activating somatostatin or vasointestinal peptide interneurons had no significant effect. Notably, PV+ neuron activation in awake mice caused a significant improvement in their orientation discrimination, mirroring the sharpened V1 orientation tuning. Together, these results provide the first demonstration that visual coding and perception can be improved by increased spiking of a specific subtype of cortical inhibitory interneurons.  相似文献   

4.
Womelsdorf T  Fries P  Mitra PP  Desimone R 《Nature》2006,439(7077):733-736
Our capacity to process and respond behaviourally to multiple incoming stimuli is very limited. To optimize the use of this limited capacity, attentional mechanisms give priority to behaviourally relevant stimuli at the expense of irrelevant distractors. In visual areas, attended stimuli induce enhanced responses and an improved synchronization of rhythmic neuronal activity in the gamma frequency band (40-70 Hz). Both effects probably improve the neuronal signalling of attended stimuli within and among brain areas. Attention also results in improved behavioural performance and shortened reaction times. However, it is not known how reaction times are related to either response strength or gamma-band synchronization in visual areas. Here we show that behavioural response times to a stimulus change can be predicted specifically by the degree of gamma-band synchronization among those neurons in monkey visual area V4 that are activated by the behaviourally relevant stimulus. When there are two visual stimuli and monkeys have to detect a change in one stimulus while ignoring the other, their reactions are fastest when the relevant stimulus induces strong gamma-band synchronization before and after the change in stimulus. This enhanced gamma-band synchronization is also followed by shorter neuronal response latencies on the fast trials. Conversely, the monkeys' reactions are slowest when gamma-band synchronization is high in response to the irrelevant distractor. Thus, enhanced neuronal gamma-band synchronization and shortened neuronal response latencies to an attended stimulus seem to have direct effects on visually triggered behaviour, reflecting an early neuronal correlate of efficient visuo-motor integration.  相似文献   

5.
Experience-dependent representation of visual categories in parietal cortex   总被引:1,自引:0,他引:1  
Freedman DJ  Assad JA 《Nature》2006,443(7107):85-88
Categorization is a process by which the brain assigns meaning to sensory stimuli. Through experience, we learn to group stimuli into categories, such as 'chair', 'table' and 'vehicle', which are critical for rapidly and appropriately selecting behavioural responses. Although much is known about the neural representation of simple visual stimulus features (for example, orientation, direction and colour), relatively little is known about how the brain learns and encodes the meaning of stimuli. We trained monkeys to classify 360 degrees of visual motion directions into two discrete categories, and compared neuronal activity in the lateral intraparietal (LIP) and middle temporal (MT) areas, two interconnected brain regions known to be involved in visual motion processing. Here we show that neurons in LIP--an area known to be centrally involved in visuo-spatial attention, motor planning and decision-making-robustly reflect the category of motion direction as a result of learning. The activity of LIP neurons encoded directions of motion according to their category membership, and that encoding shifted after the monkeys were retrained to group the same stimuli into two new categories. In contrast, neurons in area MT were strongly direction selective but carried little, if any, explicit category information. This indicates that LIP might be an important nexus for the transformation of visual direction selectivity to more abstract representations that encode the behavioural relevance, or meaning, of stimuli.  相似文献   

6.
The current work investigated the neural correlates of visual perceptual learning in grating orientation discrimination by recording event-related potentials (ERPs) from human adults. Subjects were trained with a discrimination task of grating orientation in three consecutive training sessions within 2 h. While reaction times (RTs) were shortened gradually across training sessions, the N1 was decreased and the P2 was increased over the parietal and occipital areas. A broadly distributed P3 was increased along with more practices. In addition, the time course of learning reflected in the P2 and P3 amplitudes was in line with the changes of reaction times and exhibited a stable level during later training. The impli- cations of these results to the neural mechanisms subserving perceptual learning were discussed.  相似文献   

7.
A neural correlate of response bias in monkey caudate nucleus   总被引:10,自引:0,他引:10  
Lauwereyns J  Watanabe K  Coe B  Hikosaka O 《Nature》2002,418(6896):413-417
Primates are equipped with neural circuits in the prefrontal cortex, the parietal cortex and the basal ganglia that predict the availability of reward during the performance of behavioural tasks. It is not known, however, how reward value is incorporated in the control of action. Here we identify neurons in the monkey caudate nucleus that create a spatially selective response bias depending on the expected gain. In behavioural tasks, the monkey had to make a visually guided eye movement in every trial, but was rewarded for a correct response in only half of the trials. Reward availability was predictable on the basis of the spatial position of the visual target. We found that caudate neurons change their discharge rate systematically, even before the appearance of the visual target, and usually fire more when the contralateral position is associated with reward. Strong anticipatory activity of neurons with a contralateral preference is associated with decreased latency for eye movements in the contralateral direction. We conclude that this neuronal mechanism creates an advance bias that favours a spatial response when it is associated with a high reward value.  相似文献   

8.
Attentional modulation in visual cortex depends on task timing   总被引:7,自引:0,他引:7  
Ghose GM  Maunsell JH 《Nature》2002,419(6907):616-620
Paying attention to a stimulus selectively increases the ability to process it. For example, when subjects attend to a specific region of a visual scene, their sensitivity to changes at that location increases. A large number of studies describe the behavioural consequences and neurophysiological correlates of attending to spatial locations. There has, in contrast, been little study of the allocation of attention over time. Because subjects can anticipate predictable events with great temporal precision, it seems probable that they might dynamically shift their attention when performing a familiar perceptual task whose constraints changed over time. We trained monkeys to respond to a stimulus change where the probability of occurrence changed over time. Recording from area V4 of the visual cortex in these animals, we found that the modulation of neuronal responses changed according to the probability of the change occurring at that instant. Thus, we show that the attentional modulation of sensory neurons reflects a subject's anticipation of the timing of behaviourally relevant events.  相似文献   

9.
为了研究方位辨别知觉学习的神经机制,采用心理物理的方法,研究了方位辨别知觉学习的空间频率调谐与眼传递特性.通过对9个被试在固定空间频率(周期/度)进行方位辨别的训练,并于训练前后在多个空间频率(0.5, 1, 2, 4, 8, 16和32周期/度)测量方位辨别的阈值,发现被试在训练空间频率的方位辨别阈值平均下降了7.01 dB,并且这种学习效应可显著传递到非训练眼.学习效应可分为两个部分:一部分可传递到其他空间频率(4.10 dB),另外一部分则特异于训练空间频率(2.95 dB).这些结果说明方位辨别学习可能发生在双眼信息汇聚之后的视皮层,且可能有多种机制参与其中.  相似文献   

10.
Imagery neurons in the human brain   总被引:7,自引:0,他引:7  
Kreiman G  Koch C  Fried I 《Nature》2000,408(6810):357-361
  相似文献   

11.
C D Salzman  K H Britten  W T Newsome 《Nature》1990,346(6280):174-177
Neurons in the visual cortex respond selectively to perceptually salient features of the visual scene, such as the direction and speed of moving objects, the orientation of local contours, or the colour or relative depth of a visual pattern. It is commonly assumed that the brain constructs its percept of the visual scene from information encoded in the selective responses of such neurons. We have now tested this hypothesis directly by measuring the effect on psychophysical performance of modifying the firing rates of physiologically characterized neurons. We required rhesus monkeys to report the direction of motion in a visual display while we electrically stimulated clusters of directionally selective neurons in the middle temporal visual area (MT, or V5), an extrastriate area that plays a prominent role in the analysis of visual motion information. Microstimulation biased the animals' judgements towards the direction of motion encoded by the stimulated neurons. This result indicates that physiological properties measured at the neuronal level can be causally related to a specific aspect of perceptual performance.  相似文献   

12.
通过分析猕猴初级视皮层(V1)神经元的群体活动在轮廓线检测训练过程中的变化发现:知觉训练可以降低V1神经元响应在不同试次之间的变异性,促使V1神经元对相同刺激的响应更加稳定;训练还可降低V1神经元群体中神经元活动之间的相关性,使V1神经元之间的活动更加独立;增加了神经活动的维度,提高了神经元表征信息的容量,减少了冗余的神经活动,进而提升了感知能力.  相似文献   

13.
P Neri  A J Parker  C Blakemore 《Nature》1999,401(6754):695-698
Our two eyes obtain slightly different views of the world. The resulting differences in the two retinal images, called binocular disparities, provide us with a stereoscopic sense of depth. The primary visual cortex (V1) contains neurons that are selective for the disparity of individual elements in an image, but this information must be further analysed to complete the stereoscopic process. Here we apply the psychophysical technique of reverse correlation to investigate disparity processing in human vision. Observers viewed binocular random-dot patterns, with 'signal' dots in a specific depth plane plus 'noise' dots with randomly assigned disparities. By examining the correlation between the observers' ability to detect the plane and the particular sample of 'noise' disparities presented on each trial, we revealed detection 'filters', whose disparity selectivity was remarkably similar to that of individual neurons in monkey V1. Moreover, if the noise dots were of opposite contrast in the two eyes, the tuning inverted, just like the response patterns of V1 neurons. Reverse correlation appears to probe disparity processing at the earliest stages of binocular combination, prior to the generation of a full stereoscopic depth percept.  相似文献   

14.
L E White  D M Coppola  D Fitzpatrick 《Nature》2001,411(6841):1049-1052
Sensory experience begins when neural circuits in the cerebral cortex are still immature; however, the contribution of experience to cortical maturation remains unclear. In the visual cortex, the selectivity of neurons for oriented stimuli at the time of eye opening is poor and increases dramatically after the onset of visual experience. Here we investigate whether visual experience has a significant role in the maturation of orientation selectivity and underlying cortical circuits using two forms of deprivation: dark rearing, which completely eliminates experience, and binocular lid suture, which alters the pattern of sensory driven activity. Orientation maps were present in dark-reared ferrets, but fully mature levels of tuning were never attained. In contrast, only rudimentary levels of orientation selectivity were observed in lid-sutured ferrets. Despite these differences, horizontal connections in both groups were less extensive and less clustered than normal, suggesting that long-range cortical processing is not essential for the expression of orientation selectivity, but may be needed for the full maturation of tuning. Thus, experience is beneficial or highly detrimental to cortical maturation, depending on the pattern of sensory driven activity.  相似文献   

15.
A potentially powerful information processing strategy in the brain is to take advantage of the temporal structure of neuronal spike trains. An increase in synchrony within the neural representation of an object or location increases the efficacy of that neural representation at the next synaptic stage in the brain; thus, increasing synchrony is a candidate for the neural correlate of attentional selection. We investigated the synchronous firing of pairs of neurons in the secondary somatosensory cortex (SII) of three monkeys trained to switch attention between a visual task and a tactile discrimination task. We found that most neuron pairs in SII cortex fired synchronously and, furthermore, that the degree of synchrony was affected by the monkey's attentional state. In the monkey performing the most difficult task, 35% of neuron pairs that fired synchronously changed their degree of synchrony when the monkey switched attention between the tactile and visual tasks. Synchrony increased in 80% and decreased in 20% of neuron pairs affected by attention.  相似文献   

16.
A Das  C D Gilbert 《Nature》1999,399(6737):655-661
Neurons in primary visual cortex (V1) respond differently to a simple visual element presented in isolation from when it is embedded within a complex image. This difference, a specific modulation by surrounding elements in the image, is mediated by short- and long-range connections within V1 and by feedback from other areas. Here we study the role of short-range connections in this process, and relate it to the layout of local inhomogeneities in the cortical maps of orientation and space. By measuring correlation between neuron pairs located in optically imaged maps of V1 orientation columns we show that the strength of local connections between cells is a graded function of lateral separation across cortex, largely radially symmetrical and relatively independent of orientation preferences. We then show the contextual influence of flanking visual elements on neuronal responses varies systematically with a neuron's position within the cortical orientation map. The strength of this contextual influence on a neuron can be predicted from a model of local connections based on simple overlap with particular features of the orientation map. This indicates that local intracortical circuitry could endow neurons with a graded specialization for processing angular visual features such as corners and T junctions, and this specialization could have its own functional cortical map, linked with the orientation map.  相似文献   

17.
van Ee R  Anderson BL 《Nature》2001,410(6829):690-694
The spatial differences between the images seen by the two eyes, called binocular disparities, can be used to recover the volumetric (three-dimensional) aspects of a scene. The computation of disparity depends upon the correct identification of corresponding features in the two images. Understanding what image features are used by the brain to solve this matching problem is one of the main issues in stereoscopic vision. Many cortical neurons in visual areas V1 (ref. 2), MT (refs 3, 4) and MST (refs 5, 6) that are tuned to binocular disparity are also tuned to orientation, motion direction and speed. Although psychophysical work has shown that motion direction can facilitate binocular matching, the psychophysical literature on the role of orientation is mixed, and it has been argued that speed differences are ineffective in aiding correspondence. Here we use a different psychophysical paradigm to show that the visual system uses similarities in orientation, motion direction and speed to achieve binocular correspondence. These results indicate that cells that multiplex orientation, motion direction, speed and binocular disparity may help to solve the binocular matching problem.  相似文献   

18.
Pack CC  Born RT 《Nature》2001,409(6823):1040-1042
A critical step in the interpretation of the visual world is the integration of the various local motion signals generated by moving objects. This process is complicated by the fact that local velocity measurements can differ depending on contour orientation and spatial position. Specifically, any local motion detector can measure only the component of motion perpendicular to a contour that extends beyond its field of view. This "aperture problem" is particularly relevant to direction-selective neurons early in the visual pathways, where small receptive fields permit only a limited view of a moving object. Here we show that neurons in the middle temporal visual area (known as MT or V5) of the macaque brain reveal a dynamic solution to the aperture problem. MT neurons initially respond primarily to the component of motion perpendicular to a contour's orientation, but over a period of approximately 60 ms the responses gradually shift to encode the true stimulus direction, regardless of orientation. We also report a behavioural correlate of these neural responses: the initial velocity of pursuit eye movements deviates in a direction perpendicular to local contour orientation, suggesting that the earliest neural responses influence the oculomotor response.  相似文献   

19.
Dopamine responses comply with basic assumptions of formal learning theory.   总被引:25,自引:0,他引:25  
P Waelti  A Dickinson  W Schultz 《Nature》2001,412(6842):43-48
According to contemporary learning theories, the discrepancy, or error, between the actual and predicted reward determines whether learning occurs when a stimulus is paired with a reward. The role of prediction errors is directly demonstrated by the observation that learning is blocked when the stimulus is paired with a fully predicted reward. By using this blocking procedure, we show that the responses of dopamine neurons to conditioned stimuli was governed differentially by the occurrence of reward prediction errors rather than stimulus-reward associations alone, as was the learning of behavioural reactions. Both behavioural and neuronal learning occurred predominantly when dopamine neurons registered a reward prediction error at the time of the reward. Our data indicate that the use of analytical tests derived from formal behavioural learning theory provides a powerful approach for studying the role of single neurons in learning.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号