首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用分子动力学方法研究了含(010)[101]型中心裂纹的金属α-Fe在拉伸载荷和疲劳载荷作用下裂纹扩展的微观机制。研究表明,含有此类裂纹的体心立方金属铁在单轴拉伸载荷下,其破坏机制是一个以裂尖层错和孪晶变形共同存在、伴有裂纹钝化,并最终以孪晶变形为主的过程。疲劳失效是以孪晶形变为主,全位错、不全位错、层错共同作用的破坏机制,同时发现循环加载下[11-1](-121)滑移系中孪晶形变比位错更容易发生,而且孪晶的出现,有利于减缓疲劳裂纹的扩展速度。含裂纹α-Fe变形与失效的过程,是一个位错、层错、孪晶和相变等多种微观机制共同作用的复杂过程。  相似文献   

2.
采用分子动力学模拟方法研究了含(0 1-1)[011]型中心裂纹的金属α-Fe在拉伸载荷和疲劳载荷作用下裂纹扩展的微观机制.研究结果表明:在拉伸载荷作用下,材料因应力集中导致了由bcc到hcp的相变,裂纹呈现严重钝化扩展现象,整个过程还伴随着层错、孪晶等现象的发生; 在循环载荷作用下时,位错沿滑移面(-2 1 -1)和(2 -1 1)快速发射,从而使得裂尖处应力得以快速释放,疲劳裂纹扩展相当缓慢,裂纹出现止裂现象,整个疲劳加载过程未发现孪晶、相变等现象.  相似文献   

3.
采用分子动力学模拟方法研究了含(010)[001]和(0-11)[100]型中心裂纹的金属α-Fe分别在拉伸与疲劳载荷作用下裂纹扩展的微观机制.研究发现,在拉伸载荷作用下,(010)[001]型裂纹在钝化的基础上沿着{110}滑移面塑性扩展;(0-11)[100]型裂纹尖端位错沿(011)面发射,裂纹沿(110)表面脆性解理扩展.在循环载荷作用下,(010)[001]型裂纹尖端位错沿着{111}110滑移系扩展,裂纹在裂尖应力集中作用下,沿之字形快速扩展;(0-11)[100]型裂纹扩展方式与拉伸失效时基本一致,裂纹在(110)面内发生快速的脆性解理扩展.两种裂纹扩展过程中都有层错和位错的共同作用.研究表明,(110)表面的表面能最低,是α-Fe的最优解理面.  相似文献   

4.
管道钢微观变形失效机理的分子动力学研究   总被引:1,自引:0,他引:1  
本文通过Fe-Fe3C相图得到20#钢中铁素体(碳溶于α-Fe的间隙固溶体)和渗碳体(铁和碳形成的间隙化合物,即:Fe3C)的微观组织结构,利用Material Studio软件建立α-Fe/Fe3C原子尺度的微观模型.利用Lammps软件对主裂纹附近存在微裂纹和微孔洞两种典型缺陷的20#钢模型进行了分子动力学模拟.在正则系综(NVT)条件下,研究了微观裂纹和孔洞对材料力学性能的影响.研究结果显示,裂纹的扩展是原子间化学键断裂、裂纹尖端不断发射位错导致的;当裂纹到达α-Fe/Fe3C的界面后便止裂,裂尖逐渐钝化,裂纹尖端不断向渗碳体(Fe3C)发射位错,渗碳体(Fe3C)中的原子失去了原来的排列特征,局部留下了难以恢复的空位,偏向于裂尖钝化和沿滑移面剪切断裂机制.本文提供的研究方法和结论对揭示20#钢的微观变形与失效机理具有重要的参考价值.为进一步研究腐蚀条件下20#钢的失效机理打下了基础.  相似文献   

5.
裂纹尖端位错发射与运动的分子动力学模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
带缺陷的高强度X80管线钢基体相α-Fe裂纹顶端的变形机理对于揭示该材料的失效机理是非常重要的.采用嵌入原子方法(EAM)描述原子间作用势,由大型分子动力学并行软件LAMMPS(Largescale Atomic/Molecular Massively Parallel Simulator),建立足够大的模型以避免边界对位错发射与运动的影响,对中心裂纹板施加远场应力载荷,获得了裂尖发射位错的临界应力强度因子.模拟结果显示,在远场应力作用下,裂纹尖端出现了间歇性发射出位错的现象,即,首先在裂尖沿[1 1〖  相似文献   

6.
采用基于密度泛函理论的第一性原理方法,研究了非金属溶质C、H、O和N对α型Ti合金(0001)[11 20]和(0001)[10 10]基面滑移的影响。研究结果表明,非金属原子使(0001)[10 10]基面滑移的广义层错能降低。其中,不稳定层错能γus的降低将导致该方向滑移的运动性能增强,而内禀层错能的降低将有利于I2层错的形成。对于(0001)[11 20]基面滑移,除H原子外,C、N和O原子都使Ti合金的广义层错能升高,这将使基面在[11 20]方向上滑移的能垒增加,促使该方向上的全位错向其他方向分解。通过进一步对Ti合金的Bader电荷、差分电荷密度分布和局域态密度的计算,从微观上分析了非金属溶质原子对Ti合金基面滑移的影响。电子结构的研究表明,非金属原子X(X=C、H、O和N)与其邻近的Ti原子之间形成强度稳定的TiX共价键,其对滑移过程起着重要的作用。  相似文献   

7.
ZK60镁合金的室温静液挤压强化   总被引:3,自引:0,他引:3  
对室温静液挤压ZK60变形镁合金的组织、力学性能进行研究。研究结果表明:室温静液挤压后镁合金的表面质量良好:由于加工硬化的作用,镁合金抗拉强度、屈服强度和硬度分别提高20%,60%和54%;变形过程发生了孪生动态再结晶,孪晶和二次孪晶的产生可以阻碍裂纹扩展,镁在基面滑移与孪生的交互作用下形成微晶和孪晶位错;室温静液挤压的镁合金具有良好的金属流动性,应力分布状况亦有利于变形:采用室温静液挤压,可实现镁合金室温下大变形量的形变,是强化镁合金的有效途径之一。  相似文献   

8.
Fe-28Mn-3Si-3Al TWIP钢变形的微观组织特征   总被引:2,自引:0,他引:2  
采用扫描电镜、透射电镜和电子背散射衍射技术对TWIP钢拉伸变形后的组织进行了观察和分析. 研究结果表明,热处理后的TWIP钢中存在60%的退火孪晶,变形后孪晶量减少为32%. 在拉伸过程中,具有退火孪晶的晶粒内部首先发生变形,产生的变形孪晶遗传了退火孪晶的取向. 变形过程中孪晶和位错相互作用、孪晶和孪晶相互作用以及孪晶取向改变引发滑移的综合结果使TWIP钢同时获得高塑性和高强度,因此变形过程中孪生变形是TWIP钢的主要变形机制.  相似文献   

9.
运用分子动力学模拟方法研究原子弛豫对于裂尖场的影响,发现弛豫后裂尖离散非线性区半径约为150(A);如果原子区大于这一尺寸,连续介质力学的弹性场可以通过边界条件,有效影响原子尺度的裂尖行为.进一步研究表明:体心立方铁中,张开型裂纹在低温时为脆性解理扩展,并伴随裂尖层错和孪晶的形成;随着温度升高,裂尖层错和孪晶的形成逐渐减弱,在250 K左右发生脆韧转变;同时观察到裂尖位错发射.  相似文献   

10.
【目的】研究双晶样品在单轴拉伸应变作用下所发生的纳米微观尺度裂纹扩展运动,观察裂纹扩展特征,揭示位错对裂纹扩展的作用规律。【方法】应用晶体相场(PFC)方法模拟裂纹扩展演化及其位错运动。【结果】在位错没有发射之时,裂纹沿位错对柏氏矢量方向解理扩展,发射位错后裂尖沿顺时针旋转60°继续扩展。【结论】晶界滑移出的位错由于周围应力集中,萌生出微裂纹。在裂纹扩展中,裂纹与位错相互作用,可以有多种形式。  相似文献   

11.
在室温拉-扭载荷下研究了纯钛BT1-0低周疲劳循环变形的宏观特性,结果显示材料的循环变形行为与应变幅值有关,遵循Coffin-Manson关系.通过透射电镜观察了在低周疲劳过程中位错组态,TEM观察表明:材料在比例载荷的损伤变形为滑移位错;在非比例载荷形成了孪晶结构,孪晶形态和尺寸与相位角相关.分析了该材料在低周疲劳损伤的微观行为.  相似文献   

12.
对含不同预置角度穿透裂纹板受拉伸断裂过程进行了数值模拟.选用增量型弹塑性本构关系,采用自编有限元程序求解虚功原理方程,裂纹扩展参照了LS-DYNA商业计算软件处理断裂问题的单元失效方法,考核了不同幅值载荷和预置裂纹角度的影响,给出了不同时刻等效应力云图和指定点的应力、应变随时间变化曲线.计算结果表明:当应力波在板中传播时,会在裂纹尖端引起应力集中,板产生垂直裂纹和水平裂纹.垂直裂纹扩展垂直于加载方向,水平裂纹扩展平行于加载方向,两者均与预置裂纹角度无关.板上不同位置的应力变化仅和相对裂尖位置相关,而与预置裂纹角度无关.相对裂尖位置、与板边界距离和加载位置是影响应变随时间变化的主要因素.当载荷幅值较小时,不会出现裂纹扩展.当载荷幅值较大时,聚集在裂纹尖端的应变能需较长时间才能释放,这会影响水平裂纹的出现时间.  相似文献   

13.
根据理论分析和实验观察表明.Ⅲ型裂纹尖端应力场中存在的偏聚氢原子将对该应力场中的发射位错产生附加作用力.此作用力使裂尖发射出的螺位错离开裂尖区域的阻力增大.导致裂尖无位错区变短.同时、裂尖区域偏聚氢原子促进螺位错以交滑移的方式运动.  相似文献   

14.
用分子动力学模拟的方法研究了bcc-Fe中Ⅰ型裂纹在应力及温度场下裂尖区的结构演化问题.做了两组模拟.基于各向同性线弹性力学的平面应变条件得到初始裂纹.(1)第一组模拟选取初始温度T=5 K、应力强度因子KI=1.0 KIC(KIC是临界应力强度因子),设在所对应的外载下存在初始裂纹,随后温度增加到100,300,和500 K,外载增加到KI=2.8 KIC.在这组模拟中,显示出堆垛层错.裂纹形状尖锐,且扩展速度较快.(2)第二组模拟选取初始温度T=100 K,应力场条件同于第一组,温度加到300和500 K,外载加到KI=2.8 KIC.在这组模拟中,显示出了堆垛层错、位错发射、裂尖钝化和分枝,以及孪晶带;该组裂纹的扩展速度慢于第一组.计算表明,裂纹在扩展过程中结构演化的特点与初始裂纹的工作条件有关.此外,计算了裂纹扩展过程中体系的能量,结果显示相应于发射位错状态,体系趋向于稳定态过渡.  相似文献   

15.
【目的】研究具有不同初始晶向倾角的样品在单轴拉应变作用下的纳观尺度裂纹扩展行为,了解裂纹的生长特征和扩展规律,揭示纳米级裂纹扩展机理及其对材料断裂的影响。【方法】采用晶体相场法观察不同晶向倾角下裂纹的扩展演化图及对应的应力分布图。【结果】当拉应变作用达到临界值时,无预应变的样品裂口开始起裂,并伴随着位错出现。在晶向倾角为0°、5°时,裂口在起裂时,缺口两端裂纹和裂口相连接,裂纹主要是解理脆性断裂模式扩展;在晶向倾角为10°时,裂口向左右两边各发射一个位错,位错在滑移过程中留下一系列空位,空位连通形成裂纹再与主裂口相连,裂纹主要是韧性断裂模式扩展。【结论】不同晶向取向对裂纹的扩展演化有重要影响。  相似文献   

16.
循环压缩荷载下岩石的疲劳裂纹扩展机制   总被引:1,自引:0,他引:1  
通过有限元方法建立3种几何条件的岩石裂纹模型.考虑岩石裂纹面接触问题,对循环载荷作用下的裂纹萌‘生扩展进行分析.研究结果表明,裂尖区域在循环压缩载荷作用下的残余拉伸应力是导致裂纹扩展的重要因素.同时,还对不同裂尖几何在裂纹描述的合理性方面提出了一些看法.研究结果表明,裂纹在循环压缩载荷作用下的扩展能力是有限的、稳定的.  相似文献   

17.
用金相学和云纹法分析了予应力Ly12矩形靶承受高速弹体穿击区周围裂纹的萌生,扩展和断裂过程,扩展状态和破坏特征,研究表明:冲击载荷引起第2相粒子的振动,形成空洞是裂纹起裂的主要因素,空洞连接成串导致裂纹扩展和断裂;由于ly12的第2相位粒子多处于晶界处,导致材料发生洞晶断裂,裂纹尖端塑性区分布成蝶形,裂纹两侧及与裂尖成45°方向材料的塑性应变较大,裂尖正前向较远处塑性应变小。  相似文献   

18.
大塑性变形通常发生在工业实际成形过程中。与单轴拉伸/压缩相比,扭转是研究大变形下力学行为的一种更有效的方法。然而,镁合金大应变扭转的力学响应对初始织构和孪晶很敏感。本文对挤压AZ31合金进行了拉伸和压缩实验,并采用保载和卸载两种方式获取轴向预应力,以引入位错和孪晶。随后,进行了扭转实验以明确孪晶和位错对后续变形响应的影响。在粘塑性自洽(VPSC)模型的基础上探讨了相应的显微组织和变形机制。模拟了实验观察的应力应变响应和极图。研究发现,孪晶对塑性变形的贡献较小,导致在纯扭转和预拉伸后扭转下,织构方向的变化很小。滑移/孪晶系统的活动和力学性能受到不同初始织构和滑移系启动条件的影响。此外,拉伸-扭转应力状态有利于减少织构强度。  相似文献   

19.
为深入理解残余应力与拘束在疲劳载荷下的交互作用,以镍基高温合金GH4169为研究对象,选用紧凑拉伸(CT)试样,对不同拘束CT试样的上方施加不同大小的预加载荷从而在裂尖产生不同应力。将该应力作为残余应力,系统研究残余应力和拘束交互作用下GH4169合金的疲劳和蠕变–疲劳裂纹扩展速率。结果表明:随着裂尖残余压应力的增加,不同拘束下GH4169合金的疲劳和蠕变–疲劳裂纹扩展速率均降低。与低拘束试样相比,高拘束试样的疲劳和蠕变–疲劳裂纹扩展速率对残余应力的变化更加敏感,这主要与裂尖Mises应力和垂直于裂纹扩展方向的正应力有关。与疲劳裂纹扩展速率相比,蠕变-疲劳裂纹扩展速率对残余应力的变化更加敏感。  相似文献   

20.
【目的】研究初始缺口为圆形的样品在纵轴拉伸应力作用下起裂,并在样品裂纹扩展方向确定后,再加上横轴压力下裂纹的扩展情况。观察横轴压力对其扩展方向的影响,从而得出施加压力修复正在扩展的裂纹样品的模拟结果。【方法】使用晶体相场法(PFC)进行模拟,获得裂纹扩展的演变图。【结果】在纵轴拉应力条件下,应变在达到一定数值后圆形缺口开始发射位错和空位,位错向前运动;之后柏氏矢量相反的位错相遇并相互湮灭,没有湮灭的位错组合成位错对并产生裂纹;最后微裂纹之间、微裂纹与原始缺口之间相互合并。裂纹稳定地朝着横轴方向扩展,在此基础上施加横轴的压应力,发现左侧裂纹扩展方向发生两次改变,并往裂纹扩展方向发射位错。同时初始设置的圆形缺口也有形状变化,并往纵轴发射位错。【结论】晶体相场法能有效模拟晶体裂纹扩展的微观现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号