首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
热舒适度是环境舒适度的主要方面,目前,室内环境的热舒适受到越来越多的关注,多变的建筑空间以及复杂的空调系统都会影响室内人员的热感觉,进而影响室内人员的身心健康和工作效率.由于地板辐射空调系统主要依赖辐射换热,故采用地板辐射的建筑中室内人员的热感觉与建筑空间尺寸参量之间的关系尤其值得研究.在天津大学可变建筑空间综合实验平台进行实验,实验时间是2018年9月8日—13日,供冷空调末端是地板辐射,房间底面积有6 m×6 m和12 m×12 m,房间高度有3 m、5 m、7 m和9 m,共8种实验工况.采用主观调查问卷与热环境参数测量相结合的方法,主观调查问卷包括热感觉投票和热满意率百分比,实验过程中操作温度的波动范围是22.8~26.7℃.实验结果表明,夏季采用地板辐射供冷时,建筑空间尺寸参量对地板辐射供冷下被试者的热感觉有明显影响:对比两种底面积的空间中被试者在各高度下的热感觉,发现趋于狭窄的建筑中被试者感觉更热;对比8种建筑空间中热感觉随操作温度变化的斜率,发现越是狭窄、低矮的空间,被试者对热环境的变化越敏感;被试者的热中性温度随高宽比增大而减小,即趋于扁平的建筑中被试者的热中性温度越高.这对建筑设计和空调节能都具有一定指导意义.  相似文献   

2.
提出1个基于热舒适的居住建筑室内热环境评价指标。该指标以夏热冬冷地区冬夏季热不舒适温度出现频率为基础,通过对比冬、夏季室内外热不舒适度来获得室内热环境评价。通过窗墙比、屋面保温、外墙保温和外窗水平遮阳4种情况共37个算例的模拟分析,研究该评价指标的影响因素。研究结果表明:该评价指标能较准确地反映出建筑围护结构变化对室内热环境带来的长期影响,还可以此对比不同围护结构下建筑的节能性。  相似文献   

3.
运用Airpak软件对高层住宅建筑中庭断面尺寸等结构特性,文章对其自然通风的影响进行了数值模拟研究和实验验证.在同一建筑平面结构条件下,分别选用30、39、48、57、66及75 m等不同高度的住宅建筑为研究对象.同一建筑高度对应选用6个不同尺寸的矩形中庭,分别对其热压通风进行了数值模拟研究.研究结果表明:同一建筑高度下,中庭断面尺寸大的高层住宅建筑热压通风效果好;建筑高度每增加1 m,矩形中庭边长尺寸需增大0.043 m才能满足热压通风下的各住户室内热舒适环境.  相似文献   

4.
目的研究沈阳地区供暖前后高校宿舍热环境状况,提出供暖相关建议,缓解室内供暖温度高,浪费能源的现象.方法采用现场测试与问卷调查相结合的方式对室内物理环境参数进行实测同时对受试者展开主观问卷调查;分别建立不同阶段室内温度与实际平均热感觉投票结果MTS、预测平均热感觉投票结果PMV的线性模型,对比分析不同研究阶段预测平均热感觉投票与实际平均热感觉投票间的偏离关系及不同研究阶段下受试者预测中性温度及实际中性温度间的差值.结果通过问卷统计发现部分高校寝室室内温度高于标准建议最高温度上限;计算结果表明:在供暖阶段人体感觉舒适的实际热中性温度均低于室内空气温度,预测中性温度均高于实际中性温度.结论沈阳地区高校宿舍冬季供暖阶段室内温度过高,可适当降低温度以达到节能的目的,实际平均热感觉与预测平均热感觉间存在较大偏差,在实际应用中应根据不同地区对PMV模型进行修正.  相似文献   

5.
空气流速对人体热舒适影响的研究   总被引:8,自引:0,他引:8  
在温湿度较高的场合,通过加强室内空气流动保证热舒适是最简单的节能途径.通过在实验室内由不同温湿度与空气流速组合的环境下进行热舒适实验来确定在热湿环境下空气流动对受试者热舒适性的影响程度.统计分析表明:稳定条件下中性温度的了TSE是26.3℃,热舒适温度了TSE是25.6℃,可接受的空气流速上限为0.8m/s,得出了TSE与热感觉的线性拟合方程式.  相似文献   

6.
彭旭路 《科学技术与工程》2022,22(25):11170-11178
本文以上海黄金城道步行街为研究对象,通过对街道中典型的风景园林空间按顶面遮蔽程度分为3种类型下的12个测点进行夏季小气候定点实测,同时沿步行路线对各测点空间进行热舒适问卷调查及热舒适评价指标计算,探讨上海城市街道热舒适的动态性。结果显示:①热要素是影响生理等效温度(physiologically equivalent temperature,PET)评价结果的主要小气候要素,根据问卷结果,影响夏季街道热舒适的主要小气候要素是空气温度和相对湿度;②小尺度风景园林空间变化可以引起小气候显著变化;③热感觉的空间变化主要受小气候变化影响,步行路线中的短期(3~5分钟)热经历体验可以影响热感觉;④即使热感觉高于热中性,通过随空间变化与之前的热感觉进行对比产生相对的、动态热舒适;⑤PET热舒适范围为21.1~41.1℃。验证了动态热舒适以实地热舒适投票结果为表征,受小气候空间变化、生心适应、感知控制影响的舒适机制。研究结果为指导城市健康设计提供了基于动态热舒适的经验与参考。  相似文献   

7.
夏热冬冷地区在空调系统设计中一般以夏季工况为主,故可能造成冬季供暖能耗浪费且室内温度无法满足人体热舒适要求.针对上海一实际办公室在不同送风速度下对冬季室内热环境进行了实测.实测结果表明:夏热冬冷地区建筑窗墙面积比过大和送风参数的不当设置,使送风热量难以到达人员所在空间,导致室内上部与下部空间温差过大和加热过程中存在能源浪费.尽管提高送风速度不能彻底解决人体头-足温差过大的问题,但可以减小因温度分布不均匀造成的热负荷增加量,改善人体热舒适和实现节能效应.  相似文献   

8.
住宅建筑自然通风对室内热环境的影响   总被引:3,自引:1,他引:2  
针对自然通风对住宅室内热环境的影响,选取室内热环境状况较为恶劣、风资源贫乏的重庆市住宅为例,通过i d图分析了自然通风在改善住宅建筑热环境,提高人体热舒适的可行性;并通过对典型居民住宅的现场实测数据,进行了室内平均预测投票预测不满意百分比热舒适评价。研究结果表明:即使在风资源贫乏的城市,住宅建筑良好的自然通风既能大量地节约建筑能耗,也能够极大地改善室内热环境,尤其是过渡季节及夏季阴雨天气。  相似文献   

9.
在自然通风建筑中,垂直方向上温度分布影响着热压通风。现对南京某单体大空间自然通风建筑垂直方向上温度进行实测,得出在九月份垂直温度呈线性变化,梯度在0.1~0.24℃/m范围内。将温度分层结合已有的热压模型,通过CFD模拟验证模型准确性,用Matlab计算分析建筑上下开口比Rab、室内热源q和垂直温度系数α对室内温度和自然通风量的影响,发现室内温度随着建筑上下开口比Rab和室内热源q的增大而增大,随着垂直温度系数α的增大而减小;建筑的自然通风量受室外温度影响较小,随着上下开口比Rab、室内热源q和垂直温度系数α的减小而减小。计算某高大空间在南京、重庆和广州各月的热压通风量和室内温度,结合热舒适模型确定满足基准通风量和热舒适要求的可利用上下开口比Rab范围和各月热舒适时数。结果表明:广州利用自然通风达到热舒适的时数最多,可利用的上下开口比Rab为1~9,室内热舒适时数占各月总时数的比例为35%~70%。  相似文献   

10.
为了研究混凝土天棚辐射加独立新风系统住宅的热环境和热舒适,对长沙某住宅小区在2016年夏季进行约一个月现场实测和问卷调查。结果表明混凝土辐射空调加独立新风系统住宅室内温度分布均匀,在1.1 m测点与0.1 m测点空气温差最大值为0.816℃,垂直方向从下到上空气温度先增加后减小,靠近中间高度达到最大值,最热面南墙内壁面与最冷面天棚壁面之间的温差为1.9℃,室内热舒适评价指标:-0.95PMV-0.5,室内偏凉,PPD22%。从问卷调查分析可知在辐射环境中受试人员局部热感觉符合正态分布,身体的不同部位(除双脚外)对环境的热感觉差别不大。  相似文献   

11.
缪军  何江  杜晖  胡东南  谢绿萍 《广西科学》2000,7(2):93-97,102
以1999年夏季在位于南宁地区的一栋实验太阳房所进行的热工测试为例,对比分析太阳房室内热环境,讨论隔热墙体,空气调节系统,屋面铁板辐射致冷等措施在高温高湿地区建筑室内热环境改善方面的可行性,表明实验太阳房夏季室内热环境有明显改善,但尚未达到舒适的温度。  相似文献   

12.
为了研究混凝土天棚辐射加独立新风系统住宅的热环境和热舒适,笔者对长沙某住宅小区在2016年夏季进行了约一个月现场实测和问卷调查,结果表明混凝土辐射空调加独立新风系统住宅室内温度分布均匀,在1.1 m测点与0.1 m测点空气温差最大值为0.816 ℃,垂直方向从下到上空气温度先增加后减小,靠近中间高度达到最大值,最热面南墙内壁面与最冷面天棚壁面之间的温差为1.9 ℃,室内热舒适评价指标:-0.95<PMV<-0.5,室内偏凉,PPD<22 %;从问卷调查分析可知在辐射环境中受试人员局部热感觉符合正态分布,身体的不同部位(除双脚外)对环境的热感觉差别不大。  相似文献   

13.
为了研究热湿环境中工位辐射空调加桌面风扇供冷方式下的人体热舒适情况,采用环境测量和主观问卷相结合的方式,在环境背景温度分别为26℃,28℃和30℃(相对湿度80%)的人工环境实验室内测试了24名受试者的整体热感觉、热舒适、热可接受度和热期望.结果表明,热湿环境中,工位辐射空调加桌面风扇供冷方式能显著改善处于热湿环境中的受试者的热舒适情况,但在26℃时,其效果并不明显.虽然背景环境参数超出了舒适范围,在工位辐射空调加桌面风扇供冷方式下,受试者的热感觉随着时间的增加逐渐趋于中性,且室内环境温度达到30℃(相对湿度80%)时,仍有超过80%受试者表示可接受其所处环境.因此,工位辐射空调加桌面风扇的供冷方式有效地扩展了夏季室内舒适温度范围.工位辐射空调加桌面风扇供冷方式的研究为非中性环境中维持人体热舒适和降低建筑能耗提供了新的途径.  相似文献   

14.
严寒地区建筑热舒适适应性模型   总被引:2,自引:0,他引:2  
为了研究严寒地区建筑的热环境和人体热舒适适应性模型,对哈尔滨某建筑物内的热舒适度进行了现场研究。在测量室内热舒适参数的同时,通过问卷调查,得到了135份人体热反应的样本。结果表明,哈尔滨某自然通风建筑人体热中性温度为25.6℃,热期望温度为25.4℃。男性受试者热中性温度为25.5℃,女性受试者热中性温度为25.7℃。严寒地区热舒适适应性模型为Tcomf=0.28×Tout+20.4,该模型与其他国家学者的研究有一定的相似性。  相似文献   

15.
人体的热舒适是人体舒适感觉中的重要部分。影响人体热舒适的因素很多,以夏季上海气候区为例,着重分析了空气温度、平均辐射温度、相对湿度和空气流动速度对人体热感觉的敏感性问题,得出人体对这4个因素敏感性大小,把人们定性的感觉提高到定量的分析,从而为改善室内热环境质量提供一种途径和依据。  相似文献   

16.
通过搭建大进深房间模型,测试冬季非空调工况下室内热环境,分析了室外气温和室内得热量对房间进深方向温度分布的影响.实验结果表明:围护结构热惯性使围护结构温度变化和室内温度变化相对于室外气温变化有明显衰减,围护结构传热量与人体模型散热量基本相等,房间得热与失热基本平衡;在人体模型散热形成的热羽流作用下,室内高度方向有明显的温度分层,但在外围护结构冷表面和人体模型热表面的共同作用下,室内同一高度不同进深处的温度分布并未呈现外低内高的简单规律;在不同室外温度和人体模型散热量时,沿房间进深方向不同位置离地面0.2~1.4m高度的平均温度有相似的分布规律,离外墙3.0m处温度最低,4.2m处温度最高,内外区分界线离外墙3.0~3.6m.  相似文献   

17.
通过问卷调研与现场实测的方法,分析了重庆市中低海拔村镇旅游区住宅各季节的热湿环境特性,并进行了热舒适研究.对比国家现行相关规范中的热舒适限值与实测值,发现旅游区夏季和过渡季温湿度范围偏离限值较小,冬季偏离限制最大.通过大样本问卷调查与实测进一步得到如下结论:各季节预测平均投票数PMV的修正值PMVe分别为夏季+0.67,过渡季+0.32,冬季-1.20;热感觉投票值TSV分别为夏季+0.63,过渡季-0.64,冬季-1.53;夏季和过渡季的热舒适度较高,冬季最差.根据APMV、PMVe与TSV值对比发现,影响夏季、过渡季和冬季热舒适性的最不利因素分别为:室内温度、室内湿度、室内温度.因此,为提高村镇旅游区住宅热舒适度,可采取的措施为:夏季通风降温,过渡季在外墙中加入防潮材料建立防潮层,冬季采用"空气源热泵+太阳能房"或在条件允许时采用地表水源热泵.  相似文献   

18.
为了研究大空间建筑在分层空调环境下的室内空气垂直温度分布特性及其影响因素,该文对某大空间建筑在夏季工况不同喷口送风下的室内温度进行了试验测试。通过对喷口高度、送风量、室外综合温度等参数的分析,获得了室内空气垂直和水平温度场分布特性。研究结果表明,喷口高度和送风量的增加会引起温度分层面升高和垂直温度分布不均匀,且导致较大的对流转移热负荷,但水平温度分布趋于均匀;室外综合温度与非空调区的温度及梯度密切相关。该文研究结果可为喷口送风的气流组织设计提供参考。  相似文献   

19.
随着我国社会的快速发展,人口老龄化已经逐渐发展成了社会热点问题,老龄化程度的不断加剧,使石河子对养老机构的需求也在日益增大。本文研究对石河子市天健养老院的100位老人进行问卷调查和现场热环境测试,使用相关性分析、回归分析方法对数据进行统计分析,结果表明,该建筑基于老年人生理、心理特点和行为习惯的夏季居室内实测热中性温度为29. 21℃,90%可接受的热舒适温度范围为24. 09~31. 14℃;并对不同楼层、朝向及大小的居室内温度进行分析,结果表明,在朝向相同时,底层居室温度均在老年人可接受的热舒适温度范围内,中间层和顶层达不到老年人可接受的热舒适温度范围的占比分别为14. 6%和41. 7%,东西南北4个朝向的居室达不到老年人可接受的热舒适温度范围的占比分别为22. 9%、20. 8%、39. 6%和12. 5%,室内温度会因人均居住面积的增大而降低;最后提出了改善养老院居室夏季热环境的相关建议。  相似文献   

20.
以苏州市采用辐射-新风复合系统的一个次卧室为研究对象,运用TRNSYS软件进行模拟研究。研究在夏季工况下室内设定温度、辐射末端供水流量、供水温度对辐射-新风复合系统室内热环境和室内温度滞后时间的影响,并探究了系统合适的预冷时间。结果表明,在夏季工况下,室内设定温度和供水温度改变时室内热环境变化较大,供水流量对室内热环境有一定的影响,供水流量从220 kg/h增加到260 kg/h时,室内温度达到设定温度的时间提前了1 h,供水流量不同,室内热环境达到稳定的时间也不同;供水温度对室内热环境的影响比供水流量明显,供水温度越低,预计平均舒适度PMV达到Ⅰ级舒适范围的时间越短;为满足室内热舒适的要求可提前1.0~1.5 h开启系统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号