首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国科技成果》2011,(1):F0002-F0002
近年来,国内外利用分子标记辅助技术将基因或QTL导入水稻品种已屡见报道,但得以应用的品种极少,且直接利用高产QTL(高产数量性状基因位点,以下简称“高产基因”)进行超高产育种还未见前人报道。究其因,一是野生稻中存在大量对产量不利的性状干扰;二是连锁累赘,即目的基因与不利基因的紧密连锁是育种中难以克服的难题。该项目经过10年攻关,突破野生稻高产基因利用的技术瓶颈,在国内外率先成功构建了一个野生稻高产基因分子标记辅助育种技术体系,获得突破性成果。  相似文献   

2.
水稻既是重要的粮食作物和基础研究的模式植物,也是杂种优势利用的成功典范。尽管杂种优势的利用在解决世界粮食安全问题上已做出重大的贡献,但杂种优势的分子机制在生物学和农学的基础研究中依然是一个有待阐明的重要课题。本研究利用水稻全基因组芯片,系统考察了超级杂交稻"两优培九"及其双亲——"培矮64s"(母本)和"93-11"(父本)在7个不同发育时期的组织中的基因表达谱,旨在揭示杂种一代(F1)与亲本的基因表达差异,并从中发现可能与杂种优势相关的基因。实验结果表明,从转录谱来看,杂种F1与亲本间的相似性大于亲本之间的相似性;在发现的3000多个杂种和亲本间差异表达的基因中,有各种不同的差异表达类型,多数是偏于单亲的显性表达,但也有只在杂种中出现的超亲表达。对差异表达基因的功能分类表明,虽然差异表达基因涉及诸多功能类群,但在少数功能类群(如能量代谢、碳水化合物代谢、转运等)中有明显的富集。对差异表达基因的基因组位置与产量相关的QTL(数量性状位点)进行关联分析的结果表明,差异表达基因在水稻基因组中的分布与QTL、尤其是与小区间的QTL有密切的关联;值得注意的是,部分落在QTL上的差异表达基因的功能注释有助于解释与QTL对应的体现杂种优势的农艺性状。  相似文献   

3.
水稻耐盐复杂数量性状的遗传机理及其应用研究   总被引:1,自引:0,他引:1  
一、研究背景我国盐碱耕地面积约有1亿亩,盐害已引起了作物大量减产,培育耐盐新品种迫在眉睫。然而作物耐盐性是由多个数量性状位点(QTL)控制的复杂性状,遗传机理十分复杂。因此克隆耐盐QTL对于阐明作物耐盐机理和育种应用均具有重要意义。本项研究定位了一批水稻耐盐QTL,成功克隆出一个水稻耐盐QTLSKCl,并对其开展了功能研究,为揭示作物耐盐遗传机理和育种应用提供了重要理论基础和关键技术。  相似文献   

4.
Ghd7自然变异是调控水稻抽穗期和产量潜力的重要因素   总被引:1,自引:0,他引:1  
产量潜力、株高和抽穗期是决定农作物产量的3类主要性状。我们从优良杂交水稻中分离出一个数量性状位点(QTL)Ghd7。Ghd7编码一个含CCT结构域蛋白,它对水稻的一系列性状包括单穗粒数、株高和抽穗期都产生重要影响。在长日照条件下,增强Ghd7的表达可延迟抽穗期、增加株高和穗大小。但另一方面,Ghd7功能减弱的自然变异可使水稻能在温和及较冷地区种植。上述结果表明,Ghd7在水稻产量和适应性方面具有至关重要的作用。  相似文献   

5.
近年来,国内外利用分子标记辅助技术将基因或QTL导入水稻品种已屡见报道,但得以应用的品种极少,且直接利用高产QTL(高产数量性状基因位点,以下简称”高产基因”)进行超高产育种还未见前人报道.究其因,一是野生稻中存在大量对产量不利的性状干扰;二是连锁累赘,即目的基因与不利基因的紧密连锁是育种中难以克服的难题.  相似文献   

6.
作物种质资源是控制作物性状的基因载体,是作物育种及其相关学科的生命物质基础.如何从丰富的种质资源中快速、准确地鉴定出育种上迫切需要的新的优异基因,是我国作物育种的急需与作物种质资源迫切需要解决的一个重要科学问题.我国农业上的第二次"绿色革命"应以培育"少投入、多产出、保护环境"的新品种为突破口.因此本项目以发掘抗旱、抗病(虫)、肥料高效利用及优质基因为研究重点.我们将植物基因组学的原理和方法应用于基因资源研究,提出了核心种质构建→重要新基因发掘→基因克隆的技术路线.项目近两年取得如下进展(1)明确了建立核心种质的策略与方法,建立起了水稻、小麦、大豆初级核心种质.(2)明确了新基因发掘的方法,构建了一批基因作图群体.(3)已克隆到水稻抗白叶枯病候选基因.  相似文献   

7.
杂种优势现象广泛应用于作物生产中,但其形成的遗传机理尚不十分清楚。目前,基因组学的快速发展为植物杂种优势机理研究带来机遇,大量研究发现和证实杂交子一代与其亲本之间存在全基因组水平的基因表达和表观遗铸修饰差异。将这些差异与杂种优势表现联系起来是该方向研究的重点和难点。针对特定性状,采用全基因组关联分析鉴定其杂种优势的候选基因,结合细胞或组织特异性转录组比较,可能为植物杂种优势分子机理研究带来突破。  相似文献   

8.
microRNAs(miRNAs)是长约22nt的非编码RNA,它可通过降解mRNA或抑制其翻译来调控基因。本文简要介绍了miRNAs的研究背景,阐述了通过比较近缘物种中非保守的miRNA基因来研究miRNAs分子进化的理由。我们的研究结果证实miRNA基因会受到达尔文正选择的影响,发生快速的进化。这一结果将为我们了解非蛋白编码基因的功能与进化提供崭新的视角。  相似文献   

9.
蛋白质是细胞内极其重要的生物大分子。细胞的许多重要功能,包括酶和激素的功能、运动、运输、免疫反应等都是通过蛋白质来实现的。正是由于其重要性,所以长期以来蛋白质一直是生物化学研究的一个极重要的领域。人们关注蛋白质在细胞内是如何合成的,到目前为止,至少已有5个诺贝尔奖授予了这一领域的研究者。但对于相反的过程,即蛋白质在细胞内是如何降解的,很长一段时期中很少有人关注。而以色列科学家阿龙·切哈诺沃(Aaron Ciechanover)、阿夫拉姆·赫什科(Avram Hershko)和美国科学家欧文·罗斯(Irwin Rose)正是在这方面作出了突破性的贡献,发现了泛素介导的蛋白质降解机制,因而共同获得了2004年诺贝尔化学奖。一、泛素:蛋白质降解的标记者实验证明,标记被降解蛋白质的分子是一个由76个氨基酸残基组成的多肽,最早于1975年从小牛组织中分离得到。因为随后发现在所有真核生物的不同组织中都有它的存在,所以将其称之为泛素(ubiquitin,源于拉丁字ubique,意指到处存在的)。二、ATP:细胞内蛋白质降解的供能者一般而言,生物体内的合成代谢需要提供能量,而分解代谢则释放能量。所以很长一段时期内,人们普遍认为,体内蛋白质的降解是不需要提供能量的。一些蛋白水解酶发挥功能时就是这样,如胰蛋白酶在小肠内将食物中的蛋白质降解成氨基酸。类似地,在溶酶体中对从其外部进入的蛋白质的降解也不需要能量。然而,早在上世纪50年代的实验就已表明,细胞内蛋白质的降解确实需要能量。这个看似自相矛盾的现象,即细胞内蛋白质的降解需要能量而细胞外蛋白质降解不需要附加能量,长期以来使研究者感到迷惑。切哈诺沃、赫什科和罗斯于上世纪70年代后期和80年代早期使用网织红细胞的无细胞系统进行了一系列重要的研究,成功地证明细胞内蛋白质的降解需要以多步骤的反应导致泛素标记被降解的蛋白质。这个过程使细胞以高度的特异性降解不需要的蛋白质,而正是这种精确的调节需要ATP(adenosine triphosphate,腺苷三磷酸)提供能量。三、机制:死亡之吻切哈诺沃和赫什科在1977年开始使用网织红细胞抽提物进行依赖于能量的蛋白质降解研究,发现这种抽提物可以被分为两个组分。两个组分单独存在时都不具有活性,但当两者重新组合时,就启动了依赖ATP的蛋白质降解。1978年,他们报道了其中1个组分的活性成分是一种分子量约为9 000的热稳定的多肽APF-1 (active principle in fraction 1),即后来证明的泛素,并证明APF-1能与各种蛋白质以共价键结合。1980年他们和罗斯共同报道APF-1 可以多个分子同时结合于同一蛋白质,这一现象被称为多泛素化。目前已知,蛋白质的多泛素化是一种控制信号,其导致被标记蛋白质在蛋白酶体中的降解。正是多泛素化的反应对被降解的蛋白质进行了标记,所以将其戏称为“死亡之吻”(kiss of death)。因为泛素在真核生物中普遍存在,所以研究者很快明白泛素介导的蛋白质降解在真核细胞中具有普遍的意义,而且也猜测到ATP形式的能量需要可能对细胞控制降解过程的特异性具有意义。因而进一步的研究就是要鉴定使泛素结合于其靶蛋白的酶系统。在1981年到1983年之间,切哈诺沃、赫什科和罗斯在细胞中发现了3种新的酶——泛素激活酶E1、泛素结合酶E2和泛素连接酶E3,提出了“多步骤泛素标记假说”(见图1)。至今的研究表明,一个典型的哺乳动物细胞含有1个或少数几个不同的E1酶、几十个E2酶和几百个E3酶。细胞能使用泛素系统降解有缺陷或不再需要的蛋白质。实际上,细胞中多至30%新合成的蛋白质因为不能通过细胞严格的质量控制,而由泛素标记转运到蛋白酶体被降解。 步骤①:E1酶催化的依赖ATP供能的泛素(UB)活化; 步骤②:泛素分子转移到E2酶; 步骤③:E3酶识别要降解的靶蛋白(TARGET),E2酶-泛素复合物与靶蛋白结合并使泛素分子标记从E2酶转移到靶蛋白; 步骤④:E3酶释出泛素标记的蛋白质; 步骤⑤:重复步骤④,使靶蛋白与多个泛素结合,即所谓的靶蛋白的多泛素化; 步骤⑥:蛋白酶体识别多泛素化的靶蛋白,泛素分子脱落而靶蛋白进入蛋白酶体被降解为小肽。四、蛋白酶体:蛋白质降解的执行者很多蛋白酶体,如人的一个细胞含有大约30 000个蛋白酶体。蛋白酶体是呈桶型结构的多亚基蛋白酶复合体,它能将蛋白质降解成7~9个氨基酸残基组成的小肽。蛋白酶体的活性表面在桶内而与细胞的其余部分相隔离,进入活性表面的惟一关卡能识别多泛素化标记的蛋白质,在移去泛素标记的同时接纳它们进入蛋白酶体而进行降解,形成的小肽从蛋白酶体的另一端释出。蛋白酶体本身不能选择被降解的蛋白质,是E3酶的特异性决定了细胞中哪个蛋白质要被标记而送到蛋白酶体进行降解。五、泛素系统:多种细胞功能的调节者泛素介导的蛋白质降解系统涉及细胞的多种重要生理功能,参与对细胞周期、DNA复制和染色体结构等的调控。这种系统的缺陷能导致各种疾病,包括一些癌症。1.细胞周期细胞周期是指一个细胞经生长、分裂而增殖成两个细胞所经历的全过程,细胞周期的调控对生物的生存、繁殖、发育和遗传具有十分重要的意义。在细胞周期调控中,细胞周期蛋白是一个关键蛋白质。泛素连接酶E3作为“细胞分裂后期促进复合物”的主要组分,通过对细胞周期蛋白N末端进行标记使其降解,而在控制细胞周期上发挥重要的作用。该复合物在细胞有丝分裂和减数分裂期间染色体分离中也具有关键的作用。减数分裂或有丝分裂中染色体的错误分离会导致细胞染色体数的改变,而这正是怀孕后自然流产的主要原因。一个额外的21号染色体的形成则导致唐氏综合征。因为在有丝分裂中重复地进行染色体的错误分离,许多恶性肿瘤细胞也会具有数目改变了的染色体。泛素调节系统的其他酶也参与细胞周期的调节,如调节酵母细胞周期的细胞因子Cdc34实际上就是一种泛素结合酶E2。2.DNA修复DNA修复是生物为保持其复制精确性而具有的一种特殊功能。p53蛋白作为重要的转录因子,通过调节DNA修复相关基因的表达而实现对DNA修复的调控。p53蛋白在细胞内的降解也是通过特定的E3酶标记的。正常细胞中p53蛋白不断地合成,又不断地降解,在细胞中含量低。但在DNA受损后,触发了p53蛋白的磷酸化而不再与E3酶结合,使其在细胞中含量很快增加,造成细胞周期的停顿并促使对损伤DNA进行修复。但是如果DNA损伤程度太广,则不再进行修复而触发细胞程序性死亡。p53蛋白对肿瘤具有抑制作用,被称为“基因组的卫士”。但病毒可以通过特定的蛋白质活化相关的E3酶对p53蛋白进行泛素化而将其降解,其结果是病毒感染的细胞不能再对DNA损伤进行修复,也不触发细胞程序性死亡,造成DNA突变大量增加而导致癌症。3.免疫和炎症反应转录因子NF-κB可以调节细胞的许多对免疫和炎症反应重要的基因。正常情况下,细胞中的NF-κB与其抑制蛋白结合形成没有活性的复合物。但是当细胞暴露于感染的细菌或某种信号物质时,抑制蛋白的磷酸化导致其泛素化而在蛋白酶体内降解。释出的活性NF-κB被转运到细胞核,在那儿结合并激活特定基因表达而发挥其在免疫和炎症反应中的功能。4.囊性纤维化遗传病囊性纤维化是由细胞膜上称之为囊性纤维化跨膜传导调节蛋白(CFTR)的氯离子通道功能性地缺失所引起。这种缺失是由于囊性纤维化病人细胞中合成的CFTR蛋白缺失苯丙氨酸,不能进行正确的折叠而被转运,而是通过泛素介导的蛋白质降解系统降解。没有功能性氯离子通道的细胞不能通过其细胞膜转运氯离子而导致病变。泛素介导的蛋白质降解系统与细胞功能关系的了解也促使了其在药物研究上的应用。可以针对泛素介导降解系统的组分设计药物以防止特定蛋白质的降解,也可设计药物激发该系统去摧毁不想要的蛋白质。一种称为Velcade的蛋白酶体抑制物已被用于多发性骨髓瘤作为临床试验药物。科学上的每一个重大发现,都会使人类在从必然到自然的进程中迈出一大步。泛素介导的蛋白质降解系统的发现使人们有可能在分子水平上了解细胞如何控制许多非常重要的生物化学过程。我们可以期待,随着研究的不断深入,必定会有更多的细胞过程发现与这一系统密切相关。 *明镇寰教授为生物化学与分子生物学名词审定委员会委员。  相似文献   

10.
《中国科技成果》2008,(16):57-57
植物激活蛋白(Activator Protein)是一类从多种病原真菌中分离的、具有蛋白激发子功能的新型蛋白质农药,可诱导多种植物产生系统抗性,促进植物生长,改善作物品质。作用机理研究表明,植物激活蛋白通过激活植物体内免疫系统和代谢调控系统,提高植物自身免疫力,促进植物根茎叶生长,从而增强植株抗病能力,提高作物产量。植物激活蛋白对靶标病原菌无直接杀死作用,因此不会引起病原生理小种产生抗性,对环境、人畜低毒安全、无残留。激活蛋白能显著诱导水稻、白菜、柑桔、烟草、辣椒、棉花等多种作物提高抗病和抗逆能力,生长期减少化学农药用药量达60%,大田示范推广中取得了良好的抗病增产效果,在农产品安全生产中具有广泛的应用前景。  相似文献   

11.
罗明 《中国科技成果》2009,10(21):13-13,16
油菜素类固醇(Brassinosteroids,BRs)是一类新型的植物激素,在植物生长发育的很多方面具有重要作用,已广泛应用于农业生产。本课题通过克隆棉花BRs生物合成与信号传导基因及其5’-上游调控序列,构建目标基因的植物表达载体和启动子分析表达载体,并进行棉花的遗传转化。一方面利用转基因棉花,系统地分析目标基因在BRs合成和信号传导中的作用以及在棉纤维生长发育中的功能,研究BRs种类和含量的变化导致其它植物激素水平的变化及其生物合成和信号传导基因的表达变化,并分析纤维产量和品质发生变化的转基因纤维发育过程中纤维素合成酶、  相似文献   

12.
《中国科技成果》2011,12(4):21-22
1课题简介 家蚕核型多角体病毒(BmNPV)病、家蚕浓核病毒(BmDNV-Z)病是两种危害性较大的蚕病,其中BmNPV病害更为严重.每年世界养蚕业蚕茧损失中,BmNPV病害占蚕病总损失70%左右.抗BmNPV育种,由于常规选择周期长、进程慢、不准确、效率低,至今没有成功.目前对该病的防治仅有消毒预防,这不仅效果差,而且造成环境污染.家蚕抗浓核病毒(BmDNV-Z)由隐性单基因控制.在回交育种中,不能对抗浓核病性状直接选择,现行生产种都是敏感性的.DNA分子标记辅助筛选是通过利用与目标性状紧密连锁的DNA分子标记,对目标性状进行间接选择的现代育种技术.本研究就是利用分子生物学实验技术筛选家蚕抗BmNPV和BmE)NV的DNA分子标记;创建简易实用的家蚕分子标记辅助筛选技术;应用该技术使家蚕抗BmNPV和BmDNV两种病毒基因聚合于一体;利用分子标记辅助技术定向改良现行生产品种.  相似文献   

13.
北京大学蛋白质工程及植物基因工程国家重点实验室近三年研究成果显著,他们在Plant Cell(《植物细胞》)和PNAS(《美国国家科学院院刊》)等世界一流期刊上发表了多篇有重要影响的论文。实验室苏晓东教授研究组与合作者以三维晶体结构为基础,结合生物化学及细胞生物学方法确定了一个人类未知功能的蛋白———AD-004为核定位的核苷酸激酶(Adenylate Kinase,AK),并将其命名为AK6。这是第一类被发现定位于细胞核内的腺苷酸激酶。AK6不仅在核苷酸及能量代谢研究领域具有重大理论价值,最近国际上其他实验室的结果也表明,它很可能与真核细胞…  相似文献   

14.
病原细菌通过阻断宿主细胞的重要生理过程来促进感染,进而引起各种疾病的发生。革兰氏阴性致病菌往往利用特殊的分泌系统(比如Ⅲ型分泌系统)向宿主细胞中注入毒力效应蛋白分子,这些效应蛋白采用非常复杂和精致的策略来阻断和控制宿主的信号转导通路,特别是那些在宿主天然免疫中具有重要功能的通路。最近刚刚提出的炎症小体(inflammasome)复合物被认为在巨噬细胞感受病原菌和拮抗感染的天然免疫反应中起着关键作用。我们实验室的研究一方面关注病原细菌是如何通过其分泌的毒力效应蛋白分子来阻断宿主的天然免疫信号转导通路的生物化学机制,另一方面我们也对巨噬细胞中的炎症小体通路是如何感受和抑制细菌感染的分子机制感兴趣。在前一个研究方向上,我们最近发现了包括来自肠致病大肠杆菌的NleE分子在内的一类细菌效应蛋白,它们具有一种全新的甲基转移酶活性,可以特异性地修饰宿主NF-κB信号通路中用于结合泛素链的TAB2/3分子。NleE通过甲基化修饰TAB2/3中鳌合锌离子的一个半胱氨酸从而导致TAB2/3失去结合泛素链的功能,并彻底阻断NF-κB介导的天然免疫炎症信号通路,这种修饰作用代表了一种全新的病原菌抑制宿主免疫防御反应的分子机制。在后一个研究方向上,我们最近鉴定了一个叫做NAIP的NOD样蛋白分子家族,实验发现和证明了NAIP是一类炎症小体的受体蛋白,可以直接识别来自病原菌的鞭毛蛋白或是病原菌Ⅲ型分泌系统的组成分子。NAIP家族分子在被这些细菌的模式分子活化后可以诱导NL-RC4炎症小体的激活,导致巨噬细胞发生炎症反应,进而在限制病原菌在宿主体内复制和感染中发挥重要作用。  相似文献   

15.
王国卿  童建 《中国科技成果》2009,10(10):17-20,23
在中枢核团、外周细胞、整体行为、细胞信使和基因表达等不同水平上,较系统地开展了对生物钟的结构和功能的解析工作,继而深入探讨生物节律的内在控时机理。主要内容是(1)采用电生理、行为测定、形态学观察、生化检测和cAMP/cGMP及其相关酶分子昼夜活性测定等多种方法,探讨了中缝背核(DR)对视交叉上核(SCN)昼夜节律的调节机制。(2)围绕中枢核心钟组织SCN和松果体(PG),观察了PG释放的第一信使褪黑素(MT),作用SCN上不同MT受体亚型→调制SCN昼夜节律性放电、引起SCN中第二信使cAMP、cGMP、Ca^2+和核内第三信使c-fos改变,检测各个信使昼夜节律性含量变化及其代谢调控的生物节律;探讨SCN和PG在昼夜活动度、体温调节功能上的差异;同时将cAMP/cGMP的周期性变化与细胞分裂的昼夜节律相联系,通过多种节律间的参数关系和位相性调控比较,在细胞水平上解析生物节律性活动的振荡特征、SON与PG间的跨膜信号转导及其对昼夜节律的调控机制。(3)研究昼夜模型动物中枢核团(SCN、PG)和外周血淋巴细胞的核心钟基因、钟相关基因和钟控基因在昼夜节律调控中的作用,明确在中枢生物钟系统中,SCN和PG的昼夜基因表达特征及其相互关系。同时,通过筛选和鉴定钟基因下游的目的基因,寻找中枢和外周组织中能够特征性表达或者共表达的钟控基因,从而为在分子水平上阐明中枢和外周昼夜节律生物钟间的机制性联系,提供实验依据。  相似文献   

16.
《中国科技成果》2008,(8):60-60
浙棉2号是通过分子标记辅助选配技术和质核互作不育系制种技术,于2002年配制出高优势、优质三系杂交棉新组合。2002年参加品种比较试验和浙江省棉花品种多点试验,2003~2004参加浙江省棉花品种区域试验和生产试验,2005年通过浙江省审定。该组合的细胞质不育基因和恢复基因均来源于陆地棉,克服传统三系杂交棉因来源于哈克尼西野生棉的不育基因和恢复基因而导致恢复力低和杂种优势弱等问题,使三系杂交棉产量水平有显著突破。  相似文献   

17.
基因组 genomeGenome这个名词于1922年第一次出现在遗传学文献中。中文译名为染色体组,后又译为基因组。随着遗传学研究的进展对基因组的涵义不断地赋以新的内容。一般的定义是单倍体细胞中的全套染色体为一个基因组,或是单倍体细胞中的全部基因为一个基因组。可是基因组测序的结果发现基因编码序列只占整个基因组序列的很小一部分。比如,人基因组中编码序列只占5%左右,换言之,人基因组中的非编码序列占95%以上。因此,基因组应该指单倍体细胞中包括编码序列和非编码序列在内的全部DNA分子。说得更确切些,核基因组是单倍体细胞核内的全部DNA分子;线粒体基因组则是一个线粒体所包含的全部DNA分子;叶绿体基因组则是一个叶绿体所包含的全部DNA分子。当然,也有人指出基因组应定义为一个细胞中所携带的全部遗传学指令。这是从基因组的功能着眼,因为基因组中的基因携带着编码产生蛋白质或RNA的遗传指令,同时基因组中的非编码序列携带着启动和调控基因活动的遗传指令。但是,基因组如果定义为全部遗传指令,那么,基因组的测序、作图和基因识别等就不易被人理解,遗传指令又怎么测序和作图呢?人类基因组计划 human genome project,HGP一般是指于1990年美国政府资助启动的研究人类基因组的计划。它被认为是生命科学研究领域中有史以来的第一个“大科学”项目,其意义和影响被誉为不亚于研究原子弹的“曼哈顿计划”和载人飞船登月的“阿波罗计划”。以后世界各国也都有各自的研究人类基因组的计划。HGP的主要内容是美国计划从1990至2005年间,历时15年,资助30亿美元,测定人类基因组的30亿对核苷酸的排列次序。由于实验操作上的考虑,必须把基因组DNA分子先打断成无数个小片段,然后测定每个小片段的核苷酸序列,最后把小片段连接回复到整个基因组。因此在测序前要先作图(mapping),即把每个小片段在整个基因组上的位置确定下来,以便今后可以有序地把小片段连接起来。HGP的工作内容除了作图和测序外,还有基因识别,模式生物(如大肠杆菌、酵母、果蝇、线虫和小鼠等)基因组的测序,发展生物信息学(bioinformatics)和研究HGP对伦理、法律和社会带来的冲击和影响等。在HGP实施过程中,特别是基因识别和基因克隆的成果,显现出巨大的商机。于是一些大跨国公司特别是医药行业的大财团纷纷斥巨资介入人类基因组研究领域。1998年5月美国的塞莱拉基因组学公司(Celera Genomics Inc.)宣布将于2001年完成人类基因组的工作草图(working draft),并于2003年最终完成人类基因组测序,在此态势下,美国政府也于1998年10月宣布调整HGP的工作进度,提前于2003年底前完成基因组测序。2000年6月26日,有美、英、德、日、法和中国参加的国际人类基因组测序联合体与美国塞莱拉公司联合宣布各自分别完成了人类基因组的“工作草图”。中国承担并完成了人类基因组1%的测序,即测定3000万对核苷酸序列。人类基因组工作草图 human genome “working draft”人类基因组的作图和测序是一个由粗到精的过程,是先把整个基因组打断成小片段,然后再把小片段连接复原。工作草图又称框架图,是一幅粗线条地绘制成的基因组图,它的特点有三:①应包含人体绝大多数基因的序列;②由于作图是由小片段连缀而成,所以会因丢失小片段而在图上留下空档(gap),工作草图可以留下空档,但对整个基因组的覆盖率应在90%以上;③草图中核苷酸序列的差错率可以高于最终所要求的万分之一,但不能超过百分之一。作图 mapping基因组研究中,确定遗传标记如基因、酶切位点、特定的DNA序列等在染色体上的位置,并计算它们之间的距离,称为作图。图可以分为遗传图(或遗传连锁图)、物理图两种。遗传图是根据两个遗传标记之间发生重组的频率来确定彼此在染色体上的位置和距离。两者相距远,发生重组的频率高;两者相距近,则连锁很紧密,不易发生重组。如果两个遗传标记分别位于两条染色体上也就不会发生重组。重组发生在细胞减数分裂期间,因此要分析上下代的染色体上的遗传标记出现的频率方能计算出两个标记在染色体上的相对距离。物理图则是把遗传标记直接定位在染色体DNA分子上,彼此间的距离也可用碱基对的多少来标定。基因组DNA测序后的全序列图是最精密的物理图,因为这幅图表明了几十亿个核苷酸的排列次序,标记物就是单个核苷酸。叠连群 contig一组克隆载体中插入的DNA片段,可通过末端的重叠序列相互连接成为一个连续的DNA长片段,这一组DNA片段即构成了一个叠连群。叠连群主要用于DNA测序和基因组作图。因为DNA的测序和作图时,一个很长的DNA分子在实验时是无法操作的,必须把它先切割成为小片段,然后把小片段连接起来,就是通过两个小片段末端共有的序列,相互叠加而连成长片段。因此,叠连群中小片段之间叠加的相同序列越短,研究工作效率则越高。表达序列标签 EST,expressed sequence tag在人类基因组研究中,有一个区别于“全基因组战略”的“cDNA战略”,即只测定转录的DNA序列,也就是测定基因转录产物mRNA反转录产生的互补DNA——cDNA。cDNA代表了基因中编码蛋白质的序列。EST则是cDNA的一个片段,一般长200~400个核苷酸对。一个全长的cDNA分子可以有许多个EST,但特定的EST有时可以代表某个特定的cDNA分子。两端有重叠的共有序列的EST可以组装成一个叠连群(contig),直到装配成全长的cDNA序列,这样就等于是克隆了一个基因的编码序列。将EST定位在基因组,也可作为基因组作图时的一种标记序列。互补DNA cDNA,complementary DNA信使RNA(mRNA)分子的双链DNA拷贝。构成基因的双链DNA分子用一条单链作为模板,转录产生与其序列互补的信使RNA分子,然后在反转录酶的作用下,以mRNA分子为模板,合成一条与mRNA序列互补的单链DNA,最后再以单链DNA为模板合成另一条与其互补的单链DNA,两条互补的单链DNA分子组成一个双链cDNA分子。因此,双链cDNA分子的序列同转录产生的mRNA分子的基因是相同的。所以一个cDNA分子就代表一个基因。但是cDNA仍不同于基因,因为基因在转录产生mRNA时,一些不编码的序列即内含子被删除了,保留的只是编码序列,即外显子。所以cDNA序列都比基因序列要短得多,因为cDNA中不包括基因的非编码序列——内含子。克隆 clone用作名词时,克隆是指由遗传组成完全相同的分子、细胞或个体所组成的一个群体。例如,核苷酸序列完全相同的DNA片段或基因的众多份拷贝,就称为DNA分子克隆或基因克隆。来源同一个祖细胞的基因型完全相同的众多子细胞,就构成了一个细胞克隆。抗原分子刺激后会产生抗体分子,如果是一种抗原分子刺激后产生的是单克隆抗体;如果是多种抗原分子刺激后产生的则是多克隆抗体。通过无性繁殖获得相同基因型的生物体,这是个体克隆,也称为无性繁殖系。用作动词时,克隆是指运用DNA重组技术将某一特定基因或DNA序列,插入一个载体分子,然后将这个重组分子转入宿主细胞中复制增殖,使被插入的基因或DNA分子形成众多的拷贝。克隆也指分离出单个分子或单个细胞的操作过程。例如,克隆基因是指从基因组或DNA大片段中分离出某个基因或某种DNA序列;克隆细胞则是从许多类型的细胞群体中分离出某种特定类型的细胞。用作动名词(cloning)时,指分离出某一特定的基因、DNA分子或细胞后,用一些实验方法使在数量上增多以形成由许多份拷贝构成的一个群体,有时将这一过程称为克隆化。模式生物 model organism在人类基因组研究中十分注重模式生物的研究,这是由于要认识人体基因的功能,无法直接用人体作为实验对象。但是,生物是从共同祖先演化而来的,所以对生命活动有重要功能的基因在进化上是保守的,也就是说,这些基因的结构和功能,在低等生物和高等生物中是相似的。因此,可以用比较容易研究的生物作为模型来研究其基因的结构和生物学功能,由此获得的信息可以使用于其他比较难以研究的生物,特别是推测相似的人体基因的功能。例如,果蝇、小鼠甚至酵母等基因组都有与癌症发生相关的癌基因和抗癌基因,与细胞死亡、衰老有关的基因,以及与引起人类某些遗传病的相关基因。染色体 chromosome指经染料染色后用显微镜可以观察到的一种细胞器。在细菌中,染色体是一个裸露的环状双链DNA分子。在真核生物中,当细胞进行分裂期间染色体呈棒状结构。染色体的数目是随物种而异,但对每一物种而言,染色体的数目是固定的。比如人的染色体在二倍体细胞里是46条,在生殖细胞里则是23条。染色体是由线性双链DNA分子同蛋白质形成的复合物,真核生物的核基因就分藏在每条染色体中,所以,染色体是基因的载体,也就是遗传信息的载体。一个细胞里的全部染色体也就包含了这个生物体的全部遗传信息。序列 sequenceDNA分子是由4种核苷酸(A,T,G,C)排列组成,DNA序列就是组成某一DNA分子的核苷酸的排列次序。蛋白质的一级结构是由20种氨基酸线性排列构成。蛋白质序列就是构成某种蛋白质如氨基酸线性排列次序。因此,测序(sequencing)就是用实验方法,测定DNA分子中核苷酸的种类及其排列次序,或者测定蛋白质分子中氨基酸的种类及其排列次序。人基因组测序是指测定构成人基因组的约30亿个核苷酸的种类及其排列次序。基因组中的DNA序列可以分为两大类:一类是单一序列,即在基因组中这种核苷酸的排列次序只出现一次或只有一份拷贝;另一类是重复序列。指某种核苷酸排列次序在基因组出现的次数或其拷贝数少则几份,十几份,多的可达几万份甚至几十万份。构成基因的极大多数是单一序列。重复序列则基本上全是非编码序列,它们的生物学功能是一个尚未解开的谜团。遗传密码 genetic code这是支配信使RNA(mRNA)分子中4种核苷酸的线性序列,同由它编码的蛋白质中20种氨基酸的线性序列之间关系的法则。基因是DNA分子。DNA分子由4种核苷酸(A,T,G,C)排列组成。不同的基因所携带的不同的遗传信息,编码在不同的核苷酸序列中。遗传信息要翻译成另一种语言即蛋白质的氨基酸序列,才能实现其生物学功能。可是,DNA并不是直接把遗传信息传递给蛋白质,而是先转录成mRNA,然后以mRNA为中介来决定蛋白质中的氨基酸序列。一个线性mRNA分子的核苷酸序列,决定一个线性的蛋白质分子的氨基酸序列。mRNA同DNA一样,也是由4种核苷酸组成,所不同的只是mRNA用U代替了T,即A,U,G,C4种核苷酸。蛋白质由20种氨基酸组成。mRNA分子中的核苷酸以三个为一组,如AAA,AUA,AUG……构成了一个密码子;一个密码子决定一种氨基酸。mRNA的4种核苷酸组成的密码子可以有43=64种。64种密码子决定20种氨基酸。因此密码子是冗余的或简并的,即一种氨基酸可以有不止一个密码子。比如编码甘氨酸的密码子就有4个:GGU,GGC,GGA和GGG,编码精氨基酸的密码子则有6个:CGU,CGC,CGA,CGG,AGA和AGG。不同的基因有不同的核苷酸序列,决定不同的氨基酸序列,产生不同的蛋白质,行使不同的生物学功能,最后使生物体出现不同的性状。这种遗传密码是在20世纪60年代早期破译的。基因库 gene pool有性生殖生物的一个群体中,能进行生殖的个体所携带的全部基因,或全部遗传信息,或者是一个群体中所有个体的基因型的汇总。对二倍体生物而言,有N个个体的一个群体的基因库,由2N个单倍体基因组所组成。基因文库 gene library一个生物体的基因组DNA用限制性内切酶部分酶切后,将酶切片段克隆在载体DNA分子中,所有这些插入了基因组DNA片段的载体分子的集合体,将包含了这个生物体的整个基因组,也就是构成了这个生物体的基因文库。基因型分型 genotyping这是确定一条染色体上一些基因,DNA序列或遗传标记的连锁组合,实际上就是确定一条染色体上某个区段的单体型(haplotype)。现在有的译为基因分型是不够确切的,因为分型的不止有基因,而主要是遗传标记。共线性 synteny一个物种的基因组中相互连锁的基因,在另一物种的基因组中也是连锁关系,而且在两个物种的遗传图上的位置也是相似的。例如,人和小鼠之间就有一百多个共线区。在进化过程中一些基因始终保持着连锁关系,这意味着这种连锁可能在一定条件下具有选择上的某种优势。这对研究基因功能之间的相互关系提供了有用的线索。种间同源基因 ortholog不同物种中起源于一个共同的祖先基因的一些同源基因。这些基因通常保持着相同的或相似的功能。种内同源基因 paralog在进化过程中的一个基因通过重复而生成许多个基因,这些基因逐步分化成为不同的基因,这些不同的基因称为种内同源基因。例如,在脊椎动物进化过程中,祖先珠蛋白基因位置重复而后逐步分化成α珠蛋白基因、β珠蛋白基因和肌球蛋白基因等。混编 shufflingShuffling的原意是扑克牌的洗牌,54张牌在洗牌后可以有无数种的排列组合。在新基因的生成和基因进化研究中,借用shuffling这个词,提出了“外显子混编(exon shuffling)”和“结构域混编(domain shuffling)”等假说。即新的基因是由原来的基因打断后的断片混编而成的,或者是由编码蛋白质结构域的基因片段混编而成。这种基因片段可能就是外显子,因此称为外显子混编。表观遗传学 epigenetics研究基因的核苷酸序列不发生改变的情况下,基因表达出现了可遗传的变化的一门遗传学分支学科。表观遗传的现象很多,已知的有DNA甲基化,基因组印记(genomic imprinting)和RNA编辑(RNA editing)等。朊粒 prion蛋白质性质的感染颗粒的简称。(我注意到对这个译名有不同的意见,已提出的有“朊病毒”,“感染朊”或干脆音译为“普立昂”。朊病毒有点牵强附会,prion并不具有病毒的特征。感染朊是可以考虑的,但不如朊粒简明。)酶性核酸 ribozyme具有酶一样催化活性的核酸分子,有的译为“核酶”似不大贴切。* 赵寿元教授是全国科学技术名词审定委员会第四届委员会委员;遗传学名词审定委员会主任(第二届)。(注:“小词典”栏中的词目并不都是经审定过的规范词。)  相似文献   

18.
近年来禽流感病毒疫情的发生给全球带来了重大威胁。对流感病毒蛋白,特别是流感病毒RNA聚合酶复合体的结构生物学研究对揭示病毒复制机制以及开展相关药物设计都具有重大意义。流感病毒RNA聚合酶是由PB1、PB2以及PA亚基组成的负责流感病毒的RNA合成以及维持病毒生命周期至关重要的分子机器。其中,PB1是该聚合酶的RNA合成亚基,PB2负责获取宿主mRNA用于病毒mRNA合成,而PA亚基功能则不清楚。本研究报道了来源于禽流感病毒RNA聚合酶PA亚基羧基端与PB1氨基端短肽复合体的三维晶体结构。该结构揭示了PA与PB1亚基相互作用方式,并分析了PA分子在RNA结合等方面的功能,对进一步研究PA功能以及开展针对聚合酶PA分子的药物设计具有十分重大的意义。  相似文献   

19.
20.
血吸虫是一种可引起人类血吸虫病的寄生虫,在中国乃至世界造成了极大的危害,其种类主要包括流行于亚洲的日本血吸虫和流行于非洲、南美洲的曼氏血吸虫。我们所在的日本血吸虫基因组测序和功能分析协作组完成了对日本血吸虫的全基因组测序。结果显示,日本血吸虫基因组序列由近4亿个碱基组成,含有大量的重复序列(占基因组41%)。我们从中共识别出编码基因13469个,其中有首次发现的与血吸虫感染宿主密切相关的弹力蛋白酶(elastase)基因。在与具有同等大小基因组的非寄生生物比较中,我们发现虽然基因数量相似,但其功能基因的组成却有较大差别:日本血吸虫一方面丢失了很多与营养代谢相关的基因,如脂肪酸、氨基酸、胆固醇和性激素合成基因等,这些营养物质必须从哺乳动物宿主获得;另一方面,扩充了许多有利于蛋白消化的酶类基因家族的成员。这一变化充分体现了血吸虫适应寄生生活,与宿主协同进化的重要特性。血吸虫基因组学研究成果加深了我们对血吸虫生物学特点、分子寄生虫学、分子进化以及与宿主的相互作用等方面的认识。同时,也为血吸虫病的诊断、疫苗研制和新药研究奠定了重要基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号