首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The human immunodeficiency virus type 1 (HIV-1) exploits the cell surface CD4 molecule to initiate the infection which can lead, eventually, to acquired immunodeficiency syndrome (AIDS). The HIV-1 envelope protein, gp120, interacts specifically with CD4 and soluble CD4 molecules have been shown to inhibit HIV infectivity in vitro. Effective inhibition in vivo may, however, require more potent reagents. We describe here the generation of molecules which combine the specificity of CD4 and the effector functions of different immunoglobulin subclasses. Replacing the VH and CH1 domains of either mouse gamma 2a or mu heavy chains with the first two N-terminal domains of CD4 results in molecules that are secreted in the absence of any immunoglobulin light chains. We find that the pentameric CD4-IgM chimaera is at least 1,000-fold more active than its dimeric CD4-IgG counterpart in syncytium inhibition assays and that effector functions, such as the binding of Fc receptors and the first component of the complement cascade (Clq), are retained. Similar chimaeric molecules, combining CD4 with human IgG were recently described by Capon et al., but these included the CH1 domain and did not bind Clq. Deletion of the CH1 domain may allow the association and secretion of heavy chains in the absence of light chains, and we suggest that the basic design of our constructs may be generally and usefully applied.  相似文献   

2.
Biological properties of a CD4 immunoadhesin   总被引:32,自引:0,他引:32  
Molecular fusions of CD4, the receptor for human immunodeficiency virus (HIV), with immunoglobulin (termed CD4 immunoadhesins) possess both the gp120-binding and HIV-blocking properties of recombinant soluble CD4, and certain properties of IgG, notably long plasma half-life and Fc receptor binding. Here we show that a CD4 immunoadhesin can mediate antibody-dependent cell-mediated cytotoxicity (ADCC) towards HIV-infected cells, although, unlike natural anti-gp120 antibodies, it does not allow ADCC towards uninfected CD4-expressing cells that have bound soluble gp120 to the CD4 on their surface. In addition, CD4 immunoadhesin, like natural IgG molecules, is efficiently transferred across the placenta of a primate. These observations have implications for the therapeutic application of CD4 immunoadhesins, particularly in the area of perinatal transmission of HIV infection.  相似文献   

3.
HIV infection is blocked in vitro by recombinant soluble CD4   总被引:71,自引:0,他引:71  
The T-cell surface glycoprotein, CD4 (T4), acts as the cellular receptor for human immunodeficiency virus, type 1 (HIV-1), the first member of the family of viruses that cause acquired immunodeficiency syndrome. HIV recognition of CD4 is probably mediated through the virus envelope glycoprotein (gp120) as shown by co-immunoprecipitation of CD4 and gp120 (ref.5) and by experiments using recombinant gp120 as a binding probe. Here we demonstrate that recombinant soluble CD4(rsT4) purified from the conditioned medium of a stably transfected Chinese hamster ovary cell line is a potent inhibitor of both virus replication and virus-induced cell fusion (syncytium formation). These results suggest that rsT4 is sufficient to bind HIV, and that it represents a potential anti-viral therapy for HIV infection.  相似文献   

4.
The CD4 antigen has been subverted as a receptor by the human and simian immunodeficiency viruses (HIV-1, HIV-2 and SIV). Several groups have reported that recombinant, soluble forms of the CD4 molecule (sCD4) block the infection of T lymphocytes by HIV-1, as CD4 binds the HIV envelope glycoprotein, gp120, with high affinity. We now report that sCD4 blocks diverse strains of HIV-1, HIV-2 and SIV, but is less effective for HIV-2. The blocking effect is apparent even after adsorption of virions to CD4 cells. Soluble CD4 prevents HIV infection of T-lymphocytic and myelomonocytic cell lines, but neither sCD4 nor anti-CD4 antibodies inhibit infection of glioma and rhabdomyosarcoma cell lines.  相似文献   

5.
HIV requires multiple gp120 molecules for CD4-mediated infection   总被引:35,自引:0,他引:35  
S P Layne  M J Merges  M Dembo  J L Spouge  P L Nara 《Nature》1990,346(6281):277-279
Binding of glycoprotein gp120 to the T cell-surface receptor CD4 is a crucial step in CD4-dependent infection of a target cell by the human immunodeficiency virus (HIV). Blocking some or all gp120 molecules on the viral surface should therefore inhibit infection. Consequently, competitive receptor inhibitors, such as soluble synthetic CD4 (sCD4), synthetic CD4 peptides and immunoglobulins, have been investigated in vitro and in vivo, but little is known about the molecular mechanisms of these inhibitors. We have now quantitatively examined blocking by soluble CD4 in the hope of gaining insight into the complex process of viral binding, adsorption and penetration. At low sCD4 concentrations, the inhibition in three HIV strains is proportional to the binding of gp120. The biological association constant (gp120-sCD4 Kassoc) for HIV-2NIHZ is (8.5 +/- 0.5) x 10(7) M-1, whereas Kassoc for HIV-1HXB3 (1.4 +/- 0.2) and HIV-1MN (1.7 +/- 0.1) x 10(9) M-1 are 15-20-fold larger. For all three viral strains, the biological Kassoc from infectivity assays is comparable to the chemical Kassoc. The inhibitory action of sCD4 at high concentrations, however, is not fully explained by simple proportionality with the binding to gp120. Positive synergy in blocking of infection occurs after about half the viral gp120s molecules are occupied, and is identical for all three viral strains, despite the large differences in Kassoc. Our method of measuring the viral-cell receptor Kassoc directly from infectivity assays is applicable to immunoglobulins, to other viruses and to assays using primary or transformed cell lines.  相似文献   

6.
L Buonocore  J K Rose 《Nature》1990,345(6276):625-628
The envelope glycoprotein (gp120/41) of the human immunodeficiency virus (HIV-1) attaches the virus to the cellular CD4 receptor and mediates virus entry into the cytoplasm. In addition to being required for formation of infectious HIV, expression of gp120/41 at the plasma membrane causes the cytopathic fusion of cells carrying the CD4 antigen. The expression of gp120/41 is therefore an ideal target for therapeutic strategies designed to combat AIDS. Here we show that expression of a soluble CD4 molecule, mutated to contain a specific retention signal for the endoplasmic reticulum, blocks secretion of gp120 and surface expression of gp120/41, but does not interfere with transport of wild-type CD4. By blocking transport of the HIV glycoprotein, this retained CD4 molecule prevents the fusion of CD4 cells that is normally caused by the HIV glycoprotein. Expression of the retained CD4 molecule in human T cells might therefore be useful in the intracellular immunization procedure suggested by Baltimore.  相似文献   

7.
Molecular architecture of native HIV-1 gp120 trimers   总被引:1,自引:0,他引:1  
Liu J  Bartesaghi A  Borgnia MJ  Sapiro G  Subramaniam S 《Nature》2008,455(7209):109-113
The envelope glycoproteins (Env) of human and simian immunodeficiency viruses (HIV and SIV, respectively) mediate virus binding to the cell surface receptor CD4 on target cells to initiate infection. Env is a heterodimer of a transmembrane glycoprotein (gp41) and a surface glycoprotein (gp120), and forms trimers on the surface of the viral membrane. Using cryo-electron tomography combined with three-dimensional image classification and averaging, we report the three-dimensional structures of trimeric Env displayed on native HIV-1 in the unliganded state, in complex with the broadly neutralizing antibody b12 and in a ternary complex with CD4 and the 17b antibody. By fitting the known crystal structures of the monomeric gp120 core in the b12- and CD4/17b-bound conformations into the density maps derived by electron tomography, we derive molecular models for the native HIV-1 gp120 trimer in unliganded and CD4-bound states. We demonstrate that CD4 binding results in a major reorganization of the Env trimer, causing an outward rotation and displacement of each gp120 monomer. This appears to be coupled with a rearrangement of the gp41 region along the central axis of the trimer, leading to closer contact between the viral and target cell membranes. Our findings elucidate the structure and conformational changes of trimeric HIV-1 gp120 relevant to antibody neutralization and attachment to target cells.  相似文献   

8.
J A McKeating  P D Griffiths  R A Weiss 《Nature》1990,343(6259):659-661
The main receptor for the human immunodeficiency viruses type 1 and 2 (HIV-1 and HIV-2) on T and B lymphocytes, monocytes and macrophages is the CD4 antigen 1-3. Infection of these cells is blocked by monoclonal antibodies to CD4(1,2) and by recombinant soluble CD4(4-9). Expression of transfected CD4 on the surface of HeLa and other human cells renders them susceptible to HIV infection 10. HIV-antibody complexes can also infect monocytes and macrophages by means of receptors for the Fc portion of immunoglobulins (FcR)11-13), or complement receptors 14,15. The expression of IgG FcRs can be induced in cells infected with human herpes viruses such as herpes simplex virus type 1 (HSV-1)16,17 and human cytomegalovirus (CMV)18-21. Here we demonstrate that FcRs induced by CMV allow immune complexes of HIV to infect fibroblasts otherwise not permissive to HIV infection. Infection was inhibited by prior incubation with human IgG, but not by anti-CD4 antibody or by recombinant soluble CD4. Once HIV had entered CMV-infected cells by means of the FcR, its replication could be enhanced by CMV transactivating factors. Synergism between HIV and herpes viruses could also operate in vivo, enhancing immunosuppression and permitting the spread of HIV to cells not expressing CD4.  相似文献   

9.
N R Landau  M Warton  D R Littman 《Nature》1988,334(6178):159-162
CD4, a cell-surface glycoprotein expressed on a subset of T-cells and macrophages, serves as the receptor for the human immunodeficiency virus (HIV) (reviewed in ref. 1), binding to the HIV envelope glycoprotein, gp120 with high affinity. Attempts to block infection in vivo by raising antibodies against gp120 have failed, probably because these antibodies have insufficient neutralizing activity. In addition, because of the extensive polymorphism of gp120 in different isolates of HIV, antibodies raised against one HIV isolate are only weakly effective against others. Because interaction with CD4 is essential for infectivity by all isolates of HIV, an agent that could mimic CD4 in its ability to bind to gp120, such as a peptide or monoclonal antibody, might block infection by a wide spectrum of isolates. To aid the identification of such a ligand we have defined regions of CD4 that are required for binding to gp120. Although human CD4 is similar to mouse CD4 in amino-acid sequence (55% identity, ref. 6) and structure, we have found that the murine protein fails to bind detectably to gp120 and have exploited this finding to study binding of gp120 to mouse-human chimaeric CD4 molecules. These studies show that amino-acid residues within the amino-terminal immunoglobulin-like domain of human CD4 are involved in binding to gp120 as well as to many anti-CD4 monoclonal antibodies.  相似文献   

10.
Soluble CD4 molecules neutralize human immunodeficiency virus type 1   总被引:59,自引:0,他引:59  
A Traunecker  W Lüke  K Karjalainen 《Nature》1988,331(6151):84-86
Human immunodeficiency virus (HIV) infection can bring about total collapse of the immune system by infecting helper T lymphocytes which express CD4, the molecule which mediates interaction between the cell surface and viral envelope glycoprotein gp120 (refs 3-10). HIV apparently escapes the effects of neutralizing antibodies in vivo by generating new variants which must still interact with CD4 to maintain a cycle of infection. One route to block HIV infection, therefore, could use solubilized CD4 protein to inhibit attachment of the virus to its target cell. We have used recombinant DNA techniques to generate soluble forms of CD4, and show here that these are potent inhibitors of HIV infection in vitro.  相似文献   

11.
A Cordonnier  L Montagnier  M Emerman 《Nature》1989,340(6234):571-574
Infection by the human immunodeficiency virus (HIV) is initiated by the binding of its extracellular envelope glycoprotein, gp120, to the CD4 antigen on target cells. To map the residues of the HIV-1 glycoprotein that are critical for binding and to analyse the effects of binding on viral infectivity, we created 15 mutations in a region of gp120 that is important for binding to CD4 (refs 4,5). We find that substitution of a single amino acid (tryptophan at position 432) can abrogate CD4 binding and that virus carrying this mutation is non-infectious. By contrast, other amino-acid changes in the same region do not affect CD4 binding but restrict viral tropism: virions containing isoleucine substitutions at position 425 lose their ability to infect a monocyte cell line (U937 cells) but can still infect T-lymphocyte cell lines (CEM, SUP-T1) and activated human peripheral blood lymphocytes. These results indicate that cellular tropism of HIV can be influenced by a single amino-acid change in gp120.  相似文献   

12.
T Shioda  J A Levy  C Cheng-Mayer 《Nature》1991,349(6305):167-169
Strains of human immunodeficiency virus type 1 (HIV-1) display a high degree of biological heterogeneity which may be linked to certain clinical manifestation of AIDS. They vary in their ability to infect different cell types, to replicate rapidly and to high titre in culture, to down-modulate the CD4 receptor, and to cause cytopathic changes in infected cells. Some of these in vitro properties correlate with pathogenicity of the virus in vivo. To map the viral determinants of the cellular host range of HIV-1, recombinant viruses were generated between biologically active molecular clones of HIV-1 isolates showing differences in infection of primary peripheral blood macrophages and established T-cell lines. We report here that a specific region of the envelope gp120 gene representing 159 amino-acid residues of glycoprotein gp120 seems to determine macrophage tropism, whereas an overlapping region representing 321 amino-acid residues determines T cell-line tropism. These studies provide a basis for relating functional domains of the HIV-1 env gene to pathogenic potential.  相似文献   

13.
The development of a vaccine to provide protective immunity to human immunodeficiency virus type 1 (HIV-1), the virus causing AIDS, would be the most practical method to control its spread. Subunit vaccines consisting of virus envelope glycoproteins, produced by recombinant DNA technology, are effective in preventing viral infections. We have now used this approach in the development of a candidate AIDS vaccine. Chimpanzees were immunized with recombinant forms of the HIV-1 glycoproteins gp120 and gp160 produced in Chinese hamster ovary cells, and then challenged with HIV-1. The control and the two animals immunized with the gp160 variant became infected within 7 weeks of challenge. The two animals immunized with the gp120 variant have shown no signs of infection after more than 6 months. These studies demonstrate that recombinant gp120, formulated in an adjuvant approved for human use, can elicit protective immunity against a homologous strain of HIV-1.  相似文献   

14.
The remarkable diversity, glycosylation and conformational flexibility of the human immunodeficiency virus type 1 (HIV-1) envelope (Env), including substantial rearrangement of the gp120 glycoprotein upon binding the CD4 receptor, allow it to evade antibody-mediated neutralization. Despite this complexity, the HIV-1 Env must retain conserved determinants that mediate CD4 binding. To evaluate how these determinants might provide opportunities for antibody recognition, we created variants of gp120 stabilized in the CD4-bound state, assessed binding of CD4 and of receptor-binding-site antibodies, and determined the structure at 2.3 A resolution of the broadly neutralizing antibody b12 in complex with gp120. b12 binds to a conformationally invariant surface that overlaps a distinct subset of the CD4-binding site. This surface is involved in the metastable attachment of CD4, before the gp120 rearrangement required for stable engagement. A site of vulnerability, related to a functional requirement for efficient association with CD4, can therefore be targeted by antibody to neutralize HIV-1.  相似文献   

15.
The CD4 (T4) molecule is expressed on a subset of T lymphocytes involved in class II MHC recognition, and is probably the physiological receptor for one or more monomorphic regions of class II MHC (refs 1-3). CD4 also functions as a receptor for the human immunodeficiency virus (HIV) exterior envelope glycoprotein (gp120) (refs 4-9), being essential for virus entry into the host cell and for membrane fusion, which contributes to cell-to-cell transmission of the virus and to its cytopathic effects. We have used a baculovirus expression system to generate mg quantities of a hydrophilic extracellular segment of CD4. Concentrations of soluble CD4 in the nanomolar range, like certain anti-CD4 monoclonal antibodies, inhibit syncytium formation and HIV infection by binding gp120-expressing cells. Perhaps more importantly, class II specific T-cell interactions are uninhibited by soluble CD4 protein, whereas they are virtually abrogated by equivalent amounts of anti-T4 antibody. This may reflect substantial differences in CD4 affinity for gp120 and class II MHC.  相似文献   

16.
Designing CD4 immunoadhesins for AIDS therapy   总被引:66,自引:0,他引:66  
A newly-constructed antibody-like molecule containing the gp120-binding domain of the receptor for human immunodeficiency virus blocks HIV-1 infection of T cells and monocytes. Its long plasma half-life, other antibody-like properties, and potential to block all HIV isolates, make it a good candidate for therapeutic use.  相似文献   

17.
Human immunodeficiency virus (HIV), the causative agent of AIDS, infects human lymphocytes and monocytes. An interaction between the viral envelope gp 120 and CD4 protein is required to initiate an infectious cycle. HIV infection in vitro induces syncytium formation by cell-to-cell fusion; this aspect of viral cytopathogenicity is even more dependent on gp120-CD4 interactions. That gp120 is extremely heavily glycosylated (31-36 N-linked glycans per molecule), suggests involvement of N-linked glycans in the gp120-CD4 interaction. We therefore investigated the effects of castanospermine, 1-deoxynojirimycin (dNM) and 1-deoxymannojirimycin (dMM), three trimming glycosidase inhibitors which perturb N-linked glycan structure, on induction of the formation of syncytium between HIV-infected and CD4-expressing cells. The glucosidase inhibitors castanospermine and dNM, but not the mannosidase inhibitor dMM, inhibited syncytium formation and interfered with infectivity. The potential of glucosidase inhibitors as anti-HIV therapeutic agents deserves further investigation, especially because dNM and related compounds show little toxicity in vitro and in vivo.  相似文献   

18.
The clinical manifestations of AIDS (acquired immune deficiency syndrome) often include neuropsychiatric and neurological deficits, including early memory loss and progressive dementia. HIV (human immunodeficiency virus), the aetiological agent of AIDS, is probably carried by infected macrophages in the central nervous system. The virus enters cells by binding its envelope glycoprotein gp120 to the CD4 antigen present on brain and immune cells. From the data reported in this paper, we now suggest that the neuronal deficits associated with HIV may not be entirely a result of infectivity, but that gp120 shed from HIV could directly produce the neuropathology as a result of its interference with endogenous neurotrophic substances. It is known that an analogue of a sequence contained in vasoactive intestinal peptide (VIP) occurs in all known sequenced gp120 isolates and that VIP is important for neuronal survival in cell culture. Here we show that purified gp120 from two diverse HIV isolates and a recombinant gp120 from a third isolate were all potent in specifically producing significant neuronal cell death in dissociated hippocampal cultures derived from fetal mice, and that this could be reduced by monoclonal antibodies against the murine CD4 antigen and completely antagonized by VIP.  相似文献   

19.
Human immunodeficiency virus type 1 (HIV-1) continues to spread, principally by heterosexual sex, but no vaccine is available. Hence, alternative prevention methods are needed to supplement educational and behavioural-modification programmes. One such approach is a vaginal microbicide: the application of inhibitory compounds before intercourse. Here, we have evaluated the microbicide concept using the rhesus macaque 'high dose' vaginal transmission model with a CCR5-receptor-using simian-human immunodeficiency virus (SHIV-162P3) and three compounds that inhibit different stages of the virus-cell attachment and entry process. These compounds are BMS-378806, a small molecule that binds the viral gp120 glycoprotein and prevents its attachment to the CD4 and CCR5 receptors, CMPD167, a small molecule that binds to CCR5 to inhibit gp120 association, and C52L, a bacterially expressed peptide inhibitor of gp41-mediated fusion. In vitro, all three compounds inhibit infection of T cells and cervical tissue explants, and C52L acts synergistically with CMPD167 or BMS-378806 to inhibit infection of cell lines. In vivo, significant protection was achieved using each compound alone and in combinations. CMPD167 and BMS-378806 were protective even when applied 6 h before challenge.  相似文献   

20.
Since 1992, the study of biological functions of HIV-1 gp41 has made great progress. Experimental evidence from several research groups demonstrated that gp41 has a putative cellular receptor. A recombinant soluble gp41 (aa539–684) and gp41 immunosuppressive peptide (aa583–599) could bind to human B lymphocytes and monocytes, but weakly bind to T lymphocytes. It was found that gp41 contains two cellular binding sites (aa583–599 and 641–675). GP41 could selectively inhibit cell proliferation of human T, B lymphocytes and monocytes, enhance human MHC class I, II and ICAM-1 molecule expression on cell surface. Gp41 binding proteins and a monoclonal antibody against the first binding site could inhibit this modulation effect. Amino acid sequence homology exists between gp41 and human type I interferons, and the homologous region is located in the first binding site on gp41 and in the receptor binding site on type I interferons. Studies in other groups indicate that both binding sites in gp41 may be associated with HIV infection of cells. Peptides containing two binding sites could respectively inhibit HIV infection of cells. A monoclonal antibody recognizing the second binding site could neutralize lab-strains and recently separated strains of HIV-1. Besides, antibodies against two regions (homologous with gp41 binding sites) of SIV transmembrane protein gp32 could protect macaques from SIV infection. These results suggest that the study of gp41 binding sites and cellular receptor could contribute to understanding the mechanism of HIV infection and to developing HIV vaccine and anti-HIV drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号