首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 207 毫秒
1.
Ti45A18Nb2Mn0.2B铸造合金在900~1200℃温度范围,1~10^-3/s应变速率条件下进行压缩实验,研究其变形特点以及组织变化.结果发现,形变过程中合金的真应力一真应变曲线上存在一个应力峰值,随后流变应力随着应变量的增加逐渐下降并趋于稳态流变.降低温度和提高应变~速率都使合金的应力峰值增加.在实验温度范围内合金的应变速率敏感系数为0.10~0.24;在高温形变过程中发生动态再结晶,合金的组织得到明显细化.再结晶晶粒尺寸随温度的降低和应变速率的增加而减小,也就是随Zener-Hollomonc参数的增加而减小;升高形变温度和降低应变速率均促进再结晶过程.  相似文献   

2.
在Gleeble-3500D热模拟试验机上,对挤压态CuCr25合金在应变速率为0.01~10s~(-1),变形温度为750~900℃的条件下进行恒温压缩模拟实验.结果表明:挤压态CuCr25合金在热变形过程中流变应力随变形温度升高和应变速率降低而减小;可用双曲正弦模型来描述合金的流变行为,其平均激活能为383.4kJ/mol;基于动态材料模型获得了挤压态CuCr25合金的热加工图,并结合金相显微组织分析得到了该合金在实验参数范围内较优的热加工工艺参数范围:加工温度830~900℃,应变速率为0.01~0.1s-1.  相似文献   

3.
利用Gleeble-1500热模拟试验机对6005A和6082铝合金进行高温等温压缩试验,研究了在变形温度为450-550℃和应变速率为0.005-10s^-1条件下两种铝合金的热变形流变行为.6005A铝合金在低应变速率条件下,不同变形温度时的流变曲线均呈现波浪形特征,随着应变速率的增加,硬化和软化接近平衡,表现为稳态流变特征;在高应变速率条件下,硬化过程占据主导地位,回复和硬化过程的竞争使流变曲线呈现波浪形上升的趋势.6082铝合金在低应变速率情况下,不同变形温度时的流变曲线未出现周期性波动;在中等应变速率条件下也表现为稳态流变特征;在高应变速率条件下出现波浪形特征.两种铝合金均为正应变速率敏感材料,其热变形是受热激活控制.最后给出了铝合金热变形条件下流变应力、应变速率和变形温度三者之间的关系式.  相似文献   

4.
纯镍N6平面热压缩变形行为及加工图   总被引:1,自引:0,他引:1  
利用Gleeble-3800热模拟试验机对纯镍N6在变形温度800~1100℃,应变速率5~40 s-1,应变量70%条件下进行了高温塑性变形压缩试验,分析纯镍N6高温高应变速率热变形行为,得到了材料在不同变形参数条件下的组织变化规律及流变应力变化曲线,利用动态材料模型绘制出了纯镍N6在不同应变条件下的热加工图。通过对组织及热加工图的分析研究,得出变形温度为1000~1100℃,应变速率为5~7 s-1或20~40 s-1以及变形温度为800~900℃,应变速率为5~10 s-1为纯镍N6材料高温高应变速率热变形的两个合理变形参数区间,在参数区间内N6组织均匀;而流变失稳区变形参数条件下得到的组织比较紊乱,晶粒大小不一。纯镍N6热变形后的晶粒尺寸随变形温度升高及应变速率减小而增大。  相似文献   

5.
为了研究 316 L 焊接热影响区性能 ,采用特定的热、应力、应变模拟控制曲线 ,对其在 2 0℃、6 0 0℃、10 0 0℃及 110 0℃几种温度下进行热模拟拉伸试验 ,获得了此种材料在多种应变速率下的应力 -应变曲线 .结果表明 ,在一定的应变速率下 ,316 L 的弹性模量 E及屈服极限 σ0 .2 都随温度升高明显降低 ;在室温及高温下 ,316 L 存在着 σ0 .2 随应变速率提高而提高的应变率效应 ,且应变率敏感性随温度升高而增加 .同时 ,还观察到 316 L在高温 (10 0 0℃和110 0℃ )塑性状态下由粘塑性引起的应力松弛现象及室温下的加工硬化现象 .  相似文献   

6.
采用Thermorestor-W热模拟试验机,对Cr15Mn9Cu2Ni1N不锈钢进行热压缩试验,研究其在变形温度950~1 200℃,应变速率0.01~2.5s-1条件下的动态再结晶行为.当变形温度高于1 000℃后,Cr15Mn9Cu2Ni1N不锈钢的变形以动态再结晶为主,且随温度升高,峰值应力对应的应变减小.利用应变硬化率-应力曲线确定的材料动态再结晶临界应力σc、峰值应力σp、饱和应力σss(e)和稳态应力σs的数值,回归得到临界动态再结晶应变εc与Zener-Hollomon参数的关系,并确定临界应力与峰值应力的关系.通过建立Cr15Mn9Cu2Ni1N不锈钢的热变形动态再结晶Avrami模型,分析应变速率和变形温度对Avrami曲线的影响,表明应变速率比温度对Cr15Mn9Cu2Ni1N不锈钢的动态再结晶Avrami曲线的影响更加显著.  相似文献   

7.
本文在结合镁合金常用塑性加工工艺基础上,采用Gleeble一1500D热模拟机,在温度分别为573K、633K、693K,应变速率在0.05—10.8s^-1之间的条件下,对ME21镁合金进行高温快速拉伸试验。结果表明:合金的稳态流变应力随温度的升高而降低,随应变速率的增大而增大。同一应变速率下,峰值应力随温度的增高而出现得更晚。从应力应变曲线上也能反映合金在变形阶段产生了动态再结晶。在试验条件范围内合金的高温拉伸性能强度随变形温度的升高而减小,伸长率随变形温度的升高而增大。  相似文献   

8.
316LN热变形行为及动态再结晶晶粒的演变规律   总被引:2,自引:0,他引:2  
采用热压缩试验研究了316LN不锈钢在温度1250℃-900℃,应变速率0.005s^-1~0.5s^-1,变形程度50%条件下的变形行为和组织演变;分析了变形参数对应力-应变曲线的影响规律,计算获得了该钢热变形应力指数和激活能;并通过动态再结晶晶粒演变规律的研究,建立了该钢热变形动态再结晶图,以及动态再结晶晶粒演变规律模型。研究结果可为316LN不锈钢锻造过程晶粒细匀化的控制提供科学的依据。  相似文献   

9.
ZK60镁合金高温流变本构模型   总被引:2,自引:2,他引:0  
在变形温度为523~673 K、应变速率为0.001~1 s-1的条件下,采用Gleeble-1500热模拟试验机对ZK60镁合金的热压缩变形行为进行研究。通过引入应变对ZK60镁合金流变应力本构方程进行改进。研究结果表明:ZK60镁合金流变应力随着变形温度升高和应变速率降低而减小。其高温压缩流变应力曲线可描述为加工硬化、过渡、软化和稳态流变4个阶段,但在温度较高和应变速率较低时,过渡阶段不明显;采用改进后的本构方程预测的流变应力曲线与实验所得曲线较吻合。  相似文献   

10.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,在变形温度650~850℃、应变速率0.001~10 s-1和总压缩应变量50%的条件下,对Cu-Cr-Zr合金的流变应力行为进行研究.通过应力-应变曲线和显微组织图分析了合金在不同应变速率、不同应变温度下的变化规律.结果表明:应变速率和变形温度对合金再结晶影响较大,变形温度越高,合金越容易发生动态再结晶;应变速率越小,合金也同样容易发生动态再结晶,并且对应的峰值应力也越小.从流变应力、应变速率和温度的相关性,得出了该合金热压缩变形时的热变形激活能Q和流变应力方程.研究分析Cu-Cr-Zr合金的热加工性能,可为生产实践提供理论指导与借鉴.  相似文献   

11.
C级钢因其优越的机械性能而广泛应用于火车车轮、车钩等重要零部件上。该材料零部件通常经热锻成形,因此对该材料在高温下的流动应力进行研究具有重要意义。该文采用Gleeble热力学模拟机对C级钢在温度为1 050~1 250℃、应变速率为0.01~10 s-1条件下的流动应力进行测试,获得C级钢的流动应力数据以及C级钢在不同热变形条件下的峰值及稳态流动应力。实验结果预测了C级钢存在动态再结晶现象,得到了变形温度、应变速率和变形程度对C级钢流变应力的影响规律。基于Sellers-Tegart方程拟合本构参数,包括应力水平参数、应力指数、变形激活能和结构因子,建立了C级钢的本构关系式,可作为C级钢零部件热成形加工工艺选择和参数确定的依据,同时也可作为C级钢零部件锻造工艺数值模拟的基础数据。  相似文献   

12.
采用单道次压缩实验研究了一种低Ni,Cr,Cu和Mo高性能桥梁钢的动态再结晶行为.同时,采用9次多项式对实测真应力-真应变曲线进行了拟合,消除了实测曲线上的波动,进而确定了不同条件下的加工硬化率-真应力曲线.加工硬化率-真应力曲线特征表明,在所研究的不同热压缩变形工艺条件下,均发生了动态再结晶.通过计算将常数α修正为0009MPa-1,得到了实验钢的动态再结晶激活能,确定了εc=063εp关系式,建立了动态再结晶临界应变模型.而且降低Ni,Cr,Cu和Mo含量将显著降低动态再结晶激活能.  相似文献   

13.
利用MMS-200热模拟实验机,对S32750超级双相不锈钢在温度为1 000~1 150℃,应变速率为0.01~10 s-1的条件下进行了单道次压缩实验,测定了真应力-真应变曲线,对热变形组织进行了分析.实验结果表明:当变形温度一定时,峰值应力随着应变速率的增加而增加.提高热变形温度,降低应变速率,可以促进奥氏体动态再结晶的发生.根据热变形方程计算得到压缩变形时的热变形激活能Q=460 kJ/mol.在相应的变形条件下,获得了S32750超级双相不锈钢热变形过程中峰值应力与Z参数的关系式.  相似文献   

14.
The flow curves of an ultra-high nitrogen austenitic steel containing niobium (Nb) and vanadium (V) were obtained by hot compression deformation at temperatures ranging from 1000℃ to 1200℃ and strain rates ranging from 0.001 s-1 to 10 s-1. The mechanical behavior during hot deformation was discussed on the basis of flow curves and hot processing maps. The microstructures were analyzed via scanning electron microscopy and electron backscatter diffraction. The relationship between deformation conditions and grain size after dynamic recrystallization was obtained. The results show that the flow stress and peak strain both increase with decreasing temperature and increasing strain rate. The hot deformation activation energy is approximately 631 kJ/mol, and a hot deformation equation is proposed. (Nb,V)N precipitates with either round, square, or irregular shapes are observed at the grain boundaries and in the matrix after deformation. According to the discussion, the hot working should be processed in the temperature range of 1050℃ to 1150℃ and in the strain rate range of 0.01 to 1 s-1.  相似文献   

15.
根据30CrMo钢的热模拟实验数据,建立了基于动态再结晶物理机制的位错密度、形核率及晶粒长大模型,并采用元胞自动机(CA)方法模拟了30CrMo钢在不同温度及应变速率下的微观组织演变规律。结果显示,通过CA方法模拟得到30CrMo钢的流变应力曲线及平均晶粒尺寸均与实验值吻合较好,所建模型的有效性和准确性得到验证。当应变速率一定时,变形温度越高越利于动态再结晶的充分进行,稳态下晶粒尺寸相对较大;而当变形温度一定时,高应变速率条件下材料的形核率较大,再结晶晶粒较细小。  相似文献   

16.
系统研究了1215钢的热变形行为,分析了应变、应变速度和温度对钢的流变应力的影响规律.通过热模拟实验,研究分析了不同的应变速率和应变温度条件下1215钢的应力-应变曲线.以实验数据为基础,以Johnson-Cook本构模型为依据,讨论了拟合分析Johnson-Cook方程参数的方法.通过实验数据的拟合分析,得到了表达1215钢流变应力随应变、应变速度和形变温度的数学方程,为研究1215钢的动态应力-应变行为提供了基础.研究工作表明,理论计算与实验数据得到了较好的吻合.  相似文献   

17.
0.95C—18W—4Cr—1V高速钢动态再结晶的数学模型   总被引:7,自引:1,他引:6  
应用GLEEBLE-1500热模拟试验机测量了0.95C-18W-4Cr-1V高速钢的应力-应变曲线,由此得到加工硬化率-应变关系曲线,从而确定发生动态再结晶后的稳态应变εs.稳态应变随着变形温度的升高和应变速率的降低而下降;且随着应变速率的增加,温度的变化对稳态应变的影响逐渐减小.Zener-Holloman参数Z的变化对动态再结晶的临界应变影响较小,而对稳态应变的影响较大.回归分析得到0.95C-18W-4Cr-1V高速钢的动态再结晶的晶粒尺寸和体积分数的数学模型  相似文献   

18.
采用Gleeble-1500热模拟试验机进行了T91钢的压缩试验,研究了变形温度为1100~1250℃、应变速率为0.01~1 s-1时该钢的变形行为,分析了流变应力与应变速率和变形温度之间的关系,计算了高温变形时应力指数和变形激活能,并采用Zener-Hollomon参数法构建该钢高温塑性变形的本构关系,绘制了动态再结晶图和热加工图.结果表明:在试验变形条件范围内,其真应力-真应变曲线呈双峰特征;钢中发生了明显的动态再结晶,且再结晶类型属于连续动态再结晶.T91钢的热变形激活能为484 kJ.mol-1,利用加工图确定了热变形的流变失稳区,结合力学性能,可以优先选择的变形温度为1200~1 250℃,应变速率不高于0.1 s-1.  相似文献   

19.
以SPHC钢为对象,在Gleeble-1500型热模拟机上进行单道次热压缩试验,通过分析变形后的应力与应变曲线及变形过程中的金相组织变化,研究应变诱导相变的基本规律及铁素体晶粒细化效果.结果表明:在750~830℃的变形中存在应变诱导铁素体相变,并获得超细晶铁素体晶粒尺寸为1.6~4.6μm;降低变形温度将增加相变所需化学驱动力,促进应变诱导铁素体相变的发生,从而细化铁素体晶粒;在一定的应变条件下,应变诱导相变获得的铁素体晶粒尺寸和体积分数均随应变速率的增加而减少.  相似文献   

20.
以20CrMnTiH齿轮钢为研究对象,在变形温度850~1 150 °C和应变速率0.01~10 s-1的变形条件下,采用高温压缩热模拟实验研究其塑性变形特性.发现:变形温度850 °C时的流动应力为1 150 °C时的2~3倍,应变速率10 s-1时的应力值为应变速率0.01 s-1时的2~3倍,在高温和低应变速率的条件下发生了连续动态再结晶;从微观组织来看,随变形温度升高,再结晶晶粒沿着初始晶粒的晶界长大并形成新晶粒,变形温度1 050 °C时,多次动态再结晶使得晶粒长大明显.根据采用双曲正弦函数修正的Arrhenius方程,利用线性回归法求出相应的热变形激活能为371.053 kJ/mol.利用加工图确定了相应的热变形过程最佳工艺参数范围,即变形温度为1 020~1 150 °C,应变速率为0.5~2.5 s-1.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号