首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在某些起重运输机械中(例如TB型电动滑车)装设了两个制动器联合工作,其中一个用弹簧或其它方法闭合,另一个为载重自动式的,其目的是提高制动的安全性,并改善制动过程,使制动器在不同的工作情况下能得到比较恒定的制动路程或制动时间。 作者在本文中详细地分析了载重自动制动器及联合制动的制动过程,提出了新的评判制动安全性及平稳性的指标,并利用这些指标来说明联合制动器在制动性能方面的优越性。作者在本文中对联合制动的主要参数的选定在原则上给了一些初步的建议。  相似文献   

2.
某型EV车制动助力系统采用电动真空助力形式,在样车试验时制动距离偏长。通过理论分析及试验验证确认设计初期设定的电动真空泵工作的限值偏低是导致制动距离长的主要原因。通过对真空助力系统重新进行设计校核及实车验证,使得整车制动性能达到设计要求,为今后EV车制动系统的设计开发提供了一定参考。  相似文献   

3.
本文旨在应用电机回馈制动原理提高电动自行车的续航里程。电动自行车上装设的回馈制动系统主要由电动机系统、升压斩波电路、蓄电池系统、控制系统4个部分组成。控制系统负责输入外界信号,由升压斩波电路完成驱动与制动两种工作状态的转换。驱动状态时,电机作为电动机,蓄电池提供电能;制动状态时,电机作为发电机,蓄电池吸收动能。电动自行车回馈制动系统可有效利用自行车刹车时的残余动能,不仅节约能耗,还提高了电动自行车行驶的安全性。  相似文献   

4.
利用惯性比例阀增强电动公交车制动能回收力   总被引:1,自引:1,他引:0  
为提高城市电动客车并联再生制动策略的制动稳定性与制动能回收量,分析了电动客车制动稳定性要求对机电并行再生制动时制动能回收率的影响。根据欧洲经济委员会第13号制动法规(regulation No.13 of the Economic Commission for Europe,简称ECE R13)要求,利用广义制动力分配线与广义理想制动力分配曲线的位置关系,结合电动客车在典型城市工况下的运行特征,将机电并行制动的制动强度确定在0.1与0.3之间;在机电并行制动时,利用惯性比例阀将机械制动系制动力分配比调整为ECE R13法规许可的最大值。对advisor2002电动汽车仿真软件进行了二次开发,建立了后驱型电动汽车仿真模型。仿真表明新策略使城市电动客车在典型城市工况下的制动能回收量得到了明显提高。  相似文献   

5.
三相异步电动机有两种运行状态,一种是电动运行状态;另一种是制动运行状态.而电动机的制动方法有机械制动和电磁制动两种,主要介绍了电磁制动的方法及有关计算.  相似文献   

6.
三相异步电动机有两种运行状态,一种是电动运行状态;另一种是制动运行状态。而电动机的制动有机械制动和电磁制动两种,主要介绍了电磁制动的方法及有关计算。  相似文献   

7.
针对驾驶员在紧急状况下存在着因踏板力不足而导致制动距离过长问题,以某电动液压助力制动系统为研究对象,提出了一种基于隐马尔可夫模型的驾驶员制动意图识别方法,根据对驾驶员制动意图的识别来控制助力电机执行正常制动或紧急制动的助力模式.选取助力电机的转角、转速和车速作为制动意图识别参数.以制动强度为界限对识别参数数据集进行划分,训练出正常制动与紧急制动识别模型参数,建立了识别模型库,通过比较各模型库的对数似然估计值,判断出驾驶员的制动意图.仿真结果表明:该模型可准确、实时地识别出驾驶员的制动意图;在驾驶员踏板力一定的情况下,具有制动意图识别控制的助力器具有更好的制动效果,提高了驾驶安全性.  相似文献   

8.
一种城市电动公交客车制动能量回馈方法   总被引:1,自引:0,他引:1  
为提高汽车能源利用率,提出一种电回馈制动与机械摩擦制动相结合的城市电动公交客车制动能量回馈方法.采用可控制实现串并联实时切换的超级电容器模块作为电源,当电动公交客车驱动运行时,控制超级电容器模块串联放电提供能量;而当电动公交客车制动运行时,控制超级电容器模块并联充电回馈能量.在制动初始阶段,采用电回馈制动,电动机发电运行并提供恒制动扭矩,当电动机转速减至不能提供恒制动扭矩时,由机械制动提供制动力直至制动过程结束.仿真和试验结果证明:提出的制动能量回馈方法可实现低速制动能量回馈,具有较高的制动能量回馈效率.  相似文献   

9.
对于某型电动机构制动延迟故障,通过理论分析和实验的方法,找出了制动延迟产生的原因,通过减小磁阻的方法,解决了制动延迟故障。  相似文献   

10.
为解决试验用的纯电动轻型物流车制动能量回收问题,针对该后驱纯电动轻型物流车在空载、半载和满载三种载重状态下,前后轴载荷分配差别大的特点,提出一种考虑载重变化因素的制动能量回收控制策略。通过在AVL-cruise中建立纯电动轻型物流车的整车模型,在Matlab/Simulink中建立制动能量回收控制策略模型,并在城市工况下进行联合仿真。仿真结果表明该制动能量回收控制策略有较高的能量回收效率。  相似文献   

11.
解耦式电液复合制动系统可以提高新能源汽车的刹车性能,从而提高安全性。该系统由制动踏板、一体式制动主缸、液压调节单元、电动机及其控制器、传动系统、复合制动控制单元、制动板等组成。  相似文献   

12.
基于多体动力学方法,考虑制动系统、悬架系统、等效传动系统的具体结构和空间位置以及制动器摩擦特性,以传动系统驱动力矩和制动压力为输入,提出了一种制动颤振瞬态动力学模型.分析了制动盘与制动块间的黏滑运动和相图特性以及制动系统和悬架系统关键部件振动特性,明确了制动颤振的主要传递路径.结果表明:制动颤振包含2种典型振动模式,一种是幅值较大、持续时间较短的冲击振动,另一种是幅值较小、持续时间较长的周期性谐波振动;制动钳和悬架关键部件均以制动盘切向振动为主,经过减振器支柱和下摆臂的传递,整车以纵向振动为主.  相似文献   

13.
伴随着电动车辆的普及应用,应努力对电动车辆实现高效的回馈制动以提升效率.电动车可以通过回馈制动系统对制动能量实现回收,通过特定装置储存汽车加减速时产生的能量,同时转换成其他的能源供车辆使用,依据回馈制动的基本工作原理,进行电动车制动力分配方案的研究以及制动模型的相关设计,同时结合车辆制动过程的特点,应用基于群体智能的全局随机搜索粒子群优化算法,有效提升车辆的制动稳定性.  相似文献   

14.
针对电动汽车混合制动,根据车辆纵向动力学模型,建立包括制动监视器、滑移率调节器以及力矩分配器的电动汽车混合制动自适应控制系统。制动监视器实时检测车辆状态,并在滑移率突变情况下触发制动综合控制系统。滑移率调节器在充分考虑轮胎-路面非线性接触特性的基础上,自适应计算车辆当前所需的最优制动力矩,并通过动态设置初值,解决制动控制系统触发过程中存在的制动力矩不连续问题。力矩分配器则根据电机制动及摩擦制动执行器特性对车轮制动力矩进行分配。使用MATLAB/Simulink和Car Sim进行联合仿真,结果表明,该方法有效地使滑移率确定在期望值,制动力矩输出连续,提高了电动汽混合制动的性能。  相似文献   

15.
根据高速电动车组制动的特点及动力制动和摩擦制动的复合原则,对300km/n电动车组制动系统设计方案进行探讨,提出一种先进的制动系统设计方案,充分发挥动力制动无磨损的优势,微机控制的制动控制系统操作方便、灵活、可靠。对基础制动参数的计算结果表明该方案符合设计要求。关键词:电动车组;制动系统;动力制动;摩擦制动  相似文献   

16.
许崇良  朱君 《科技资讯》2011,(4):66-68,70
目前中小型电动车辆常用MC33039、MC33035,IR2130及MOSFET组成电机驱动电路.电动车辆制动或减速时,若电机的转速低于电机的额定转速,无法实现能量回馈.本文主要介绍在IR2130及MOSFET之间增加电子开关,关断驱动桥的上臂三个MOSFET功率管,利用下半桥构成半桥斩波式斩波升压回馈电路,实现电动车辆制动或减速时能量回馈.  相似文献   

17.
针对当前重型车辆在缓速制动中存在的不足,设计了由液压泵/马达元件、蓄能器以及溢流阀等组成的液压辅助缓速制动装置。通过对车辆与制动装置的分析,制定了系统构型、液压原理图以及制动加速策略;应用AMESim软件搭建了车辆传动系统以及液压系统的模型;对不同档位下的制动效果进行了分析;并研究了在标准循环工况下机械制动与液压制动的分配;搭建了液压系统相关实验回路,对液压回路的转矩、流量、压力以及温度等参数进行了研究。得到了在不同车辆行驶状况下的制动效果,以及不同制动信号下的响应特性,证明该缓速制动系统在转矩可控性以及散热能力可以得到有效提升,并能长时间可靠运行。  相似文献   

18.
为了充分回收电动汽车制动过程中的制动能量,达到延长续驶里程和节约能源的目的,针对后驱纯电动客车进行了最佳制动能量回收控制策略的研究。在分析制动能量回收系统结构的基础上,考虑驱动电机和动力电池对电机制动力大小的限制,提出了一种最佳制动能量回收控制策略,该策略在保证制动安全的前提下,能回收尽可能多的制动能量。并基于Cruise和Simulink联合仿真平台,搭建了整车仿真模型,进行了仿真验证,仿真结果表明在中国典型城市循环工况中采用该制动能量回收控制策略,所回收的制动能量占制动过程中消耗的动能的比例可达24.7%,占制动系统所消耗的总能量的比例可达36.2%,节能效果明显。  相似文献   

19.
微型电动轿车制动能量回收及控制策略的研究   总被引:1,自引:0,他引:1  
分析了电动汽车制动能量转换和回收的制约因素,以某前驱动微型电动轿车为研究对象,在传统汽车制动理论的基础上,提出了电机再生制动力和摩擦制动力以及整车前、后轮制动力的联合控制策略;基于Matlab/Simulink和Advisor软件平台进行了系统建模和典型循环工况下的仿真,结果表明,该联合控制策略能够实现安全制动条件下的制动能量回收,且能量回收率达14.13%。  相似文献   

20.
针对纯电动商用车在连续制动时,气源压力偏低会导致驱动轴耦合制动力响应速度变慢,影响制动能量回收效率的问题,提出一种基于比例继动阀的解耦式制动能量回收系统(uncoupled braking energy recovery system, URBS)方案。首先,基于比例继动阀的迟滞特性,采用前馈-单神经元PID控制方法,实现制动气压的准确输出;其次,以电池SOC、车速等为约束条件,根据气源压力信号确定供压模式,并制定解耦式制动能量回收控制策略;最后,基于AMESim,MATLAB/Simulink及TruckSim搭建联合仿真平台,选取单次制动工况与循环工况验证了制动力耦合效果及系统的制动能量回收效果。结果表明,基于比例继动阀的URBS可实现耦合制动力的快速响应,达到稳态压力值75%的时间小于0.1 s,且在中国重型商用车行驶工况和中国重型商用车瞬态工况下有效制动能量回收率分别为10.13%,17.17%。所提URBS方案能有效提高驱动轴耦合制动力的响应速度及耦合精度,可为纯电动商用车气压式URBS方案设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号