首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
通过风洞实验,研究了尾部导流板对25°倾角Ahmed类车体尾流与气动阻力的影响规律.对比了斜面两侧与斜面上边缘宽度分别为5mm,10mm和15mm导流板的减阻效果.试验中模型缩尺比为1∶2,基于来流风速与模型长度的雷诺数为8.7×105.研究结果表明,模型尾流中存在一对规则的拖曳涡,并伴随有强烈下扫流,尾部斜面上存在D形流动分离区.斜面两侧5mm宽导流板对尾流的影响很小,对应的气动阻力会增大约2.1%;斜面两侧10mm,15mm宽导流板以及不同宽度的水平导流板可显著削弱尾流中的拖曳涡.水平导流板能够消除斜面上的流动再附着并破坏D形分离区,其减阻效果明显高于两侧导流板,最大减阻率可达11.8%.  相似文献   

2.
为降低汽车行驶过程中的气动阻力,以尾部倾角为25°的Ahmed类车体模型为研究对象,提出在其尾部垂直面下边缘添加不同长度柔性飘带的控制方法,采用格子玻尔兹曼方法与有限元分析相结合的流固耦合计算方法,探讨了柔性飘带长度对汽车气动阻力的影响。首先对汽车模型进行格子尺度优化,得到模型的空气阻力系数;然后研究了柔性飘带对汽车气动阻力的影响;最后对模型尾部流场、柔性飘带附近流场以及模型尾部表面压力系数进行了分析。仿真结果表明:在模型尾部添加适当长度的柔性飘带,改善了尾流结构,提升了尾部表面压力,减小了车体的压差阻力,减阻率最高为12.25%。  相似文献   

3.
为了解涡流发生器对重型厢式货车气动减阻特性的影响,以某国产重型厢式货车为研究对象,基于计算流体动力学的数值模拟,研究涡流发生器的形状、布置位置、高度以及间隙比对厢式货车的减阻效果,并分别从速度流线结构、湍动能分布和压力分布等方面探讨其减阻原因。结果表明:涡流发生器的形状、布置位置、高度以及间隙比对重型厢式货车气动阻力的影响较大。其中叉形涡流发生器位于货厢后端时的气动阻力系数最小,其值为0.699 6,相对于货车原始模型的减阻率为11.7%,因此叉形涡流发生器是最佳的涡流发生器造型。加装涡流发生器减小了货车尾部涡流区的面积和强度,使尾部气流延迟分离,进而减小了货车前后压差阻力。  相似文献   

4.
为有效改善超燃冲压发动机隔离段性能,运用数值模拟的方法研究了来流马赫数2.0条件下多种结构的微型涡流发生器的流动控制特性。研究结果表明随着微型涡流发生器后缘宽度的增加,隔离段内激波串长度有效缩短,高压前锋后移且整体式略优于分离式;整体式微型涡流发生器产生的流向涡对的横向距离较近,与下壁面的距离较分离式远,能在短距离流动过程中将动量传递给低动量区,有效改善边界层流动性,但作用距离较分离式短;带后缘宽度的微型涡流发生器可有效降低流场总压畸变,对流场质量改善作用要优于基本型。  相似文献   

5.
针对货车气动阻力较高问题,研究了尾部上翘角对货车减阻效果的影响.货车采用简化的Ahmed模型,运用SSTk-ω湍流模型进行CFD模拟,针对不同尾部上翘角对货车外流场的影响因素进行了研究,包括气动阻力系数、表面压力系数及尾部涡结构等.研究结果表明,通过采用尾部上翘角能够减小货车尾部分离区强度,从而降低阻力.尾部上翘角在10°时阻力系数达到最小,减小阻力系数约6%.  相似文献   

6.
为了优化某厢式货车的气动阻力系数,设计了驾驶室前部仿生减阻结构、顶部和侧部涡流发生器、底部涡流发生器等3种气动减阻装置。研究了3种单一气动减阻装置主要相关参数对气动阻力的影响,分别从货车外流场的速度轨迹、压力分布和湍动能分布等3方面详细分析了各单一气动减阻装置的减阻效果。在此基础上采用正交试验法对3种气动减阻装置的主要参数进行优化,获得最优减阻货车模型。研究表明:驾驶室前部突出部分的长度对货车整车气动阻力系数的影响比倾角更大;最优货车头部形状的倾角和长度分别为135°和300 mm,该模型的气动阻力系数为0.721 4,相对于货车原始模型的减阻率为8.93%;涡流发生器的高度和位置对货车的减阻效果均有较大的影响;涡流发生器可以增加货车尾部分离区流场的能量,使得尾涡区减小,气动压差阻力减小;3种气动减阻装置对货车气动阻力系数的影响大小依次为:底部涡流发生器、货车前部仿生减阻结构、顶部和侧部涡流发生器,其最优厢式货车模型的空气阻力系数为0.683 3,其复合减阻装置的最佳减阻率为13.8%。  相似文献   

7.
采用DES(分离涡模型)湍流模型对巡航状态下泵-艇一体化模型进行全流域非定常数值模拟,利用Ω准则识别捕捉不同航速的泵喷尾部流场中的涡结构,研究喷流涡的动力学特性.结果表明:潜艇和泵喷推进器外部绕流与尾部喷流相互作用,产生不同的流场区域,随着航速增加无旋区和流场扩散区范围增加,艇体绕流和尾部喷流以更快的速度产生强耦合作用,并沿着潜艇前进的反方向发展和运动;随着航速增加毂涡变化区间不断增加,剪切层涡的范围和能量及脱落涡的能量也随着航速的增加而增加;旋转周期内,流场中部毂涡和脱落涡相互影响较弱,两种涡沿着叶轮旋转方向做无周期的旋转运动,流场尾部两种涡产生复杂影响,随时间产生无规则变化及运动.  相似文献   

8.
通过3种数值模拟方法的对比分析,得到最优的模拟方案,故采用分离涡方法对Ahmed模型气动特性进行研究,分析了不同侧风角对钝体尾流的涡量、湍流强度、压力及流线的分布规律的影响,得到了力和力矩系数的变化特征,总结了尾流倾斜角度随侧风角变化的综合公式。研究结果表明,侧风角对钝体尾流特征参数影响不是单调的,在侧风角为30°时钝体尾部涡量最大;钝体尾流倾斜角度与气动力系数随侧风角的增大而增大;侧风角50°时的钝体背部迎风侧压力和头部平均速度也达到最大值。研究结果可以为复杂横向来流条件下汽车运行的安全性和稳定性提供一定依据。  相似文献   

9.
为降低微型轴流风扇叶根端壁区域二次流所引起的损失,根据涡流发生器的流动控制思想,提出一种在叶根前缘压力面侧设置微型直板的新型流动控制方法;以某微型轴流风扇为研究对象,采用数值模拟结合实验的方法,重点分析了不同安装角的涡流发生器对轴流风扇气动性能及内部流场的影响;研究结果表明:涡流发生器存在提高风扇静压与静压效率的最佳几何安装角,涡流发生器会对叶轮内部流场产生影响,由涡流发生器所形成的诱导涡与压力侧马蹄涡分支进行掺混,会削弱马蹄涡的强度,在一定程度上抑制了由马蹄涡参与演变成的通道涡的发展,使叶轮流道中流体进行再分配;在宏观方面,结构匹配的涡流发生器可提高风扇的气动性能,当涡流发生器安装角度为15°时,在风扇高效运行区间内同原型风扇相比,安装涡流发生器的风扇其静压最多提高8%,静压效率最大可提升2.4%。对于大轮毂比微型轴流风扇,由通道涡所引起的二次流损失不容忽视,同时在对叶轮进行设计优化时应重视叶根端壁处的结构设计。  相似文献   

10.
在25°Ahmed汽车模型尾部斜面上端布置介质阻挡放电(DBD)等离子体激励器,通过风洞试验,研究了激励器频率为9 k Hz时不同激励电压对模型气动阻力系数的影响、10~25 m/s风速下的最大减阻率和此时对应的最佳激励电压. PIV测得的流场图以及PSI压力扫描系统测得的模型尾部斜面的压力值显示,在DBD开启时,激励器周围及尾部斜面近壁面区域流速提高,尾部分离区减小,尾部斜面上测压点处的压力升高;根据天平传感器测量结果,试验风速为15 m/s时获得最大减阻率,为7. 28%,对应的最佳激励电压为18. 5 k V. DBD激励器通过降低模型的压差阻力起到减阻效果.随着激励电压的提高,气动阻力系数呈现先下降后趋于平稳的趋势,且存在一个最佳激励电压;随着风速的增加,需要更高的激励强度才能起到较好的减阻效果.  相似文献   

11.
通过与已发表的数据相比对,对大涡模拟方法的有效性进行验证.采用该数值方法对高雷诺数下25°后倾角Ahmed类车体背部斜面及尾部垂直面处尾迹区的流动进行解算.通过对背部斜面处分离泡、背部斜面侧边"C柱"处卷起的拖曳涡对及尾部垂直面处回流区流场信息的采用及相关频谱特性分析,研究并明确了尾迹区起主导作用的大尺度相干结构及运动的非定常特性.在流动的不同区域,类车体尾迹区流动的非定常特性不尽相同,主要体现为背部斜面分离泡的拍击振动具有绝对不稳定性特征,由KelvinHelmholtz(KH)不稳定性诱发的大尺度相干结构具有对流不稳定性特征;两侧"C柱"拖曳涡对在背部斜面上与展向涡相互耦合,具有较好的对称性;拖曳涡对在垂直面处回流区内与该区展向涡相互混掺,但无耦合作用且不具有对称性;垂直面处回流区内上、下侧剪切层卷起的展向涡以类似卡门涡街形式交替产生并脱落;高雷诺数时,整个尾迹区流动的特征频率趋于一致.  相似文献   

12.
采用基于SST k-ω双方程的IDDES湍流模型,在高速磁浮列车流线型部位设置不同形态的仿生球体结构,对其减阻性能进行瞬态模拟。研究结果表明:仿生球体结构不仅可以有效降低尾流流速,削弱尾流的整体强度,而且能够约束尾涡的发展,减小尾涡的辐射范围;球体结构减小了尾车流动分离位置处的高速流区面积,并有效延缓了湍流的猝发性,使得湍流强度降低,边界层厚度变窄;仿生球体结构对列车风产生一种吸附作用,使得高速区被集中在距离尾车鼻尖更近的部位,尾流的流速波动变小;球体形态差异对流场结构的影响较大,与凸包形态的球体结构相比,凹坑形态的球体结构对尾流强度的削弱作用更显著,对流动分离位置边界层的作用效果更好,对列车风的吸附能力更强;凸包形态和凹坑形态的仿生球体结构可分别减小7.64%和14.58%的尾车气动阻力,但会分别增大2.33%和1.16%的头车气动阻力。  相似文献   

13.
航空母舰的空气尾流对舰载机的起飞、着舰有较大的影响,认清航母尾流对舰载机的干扰原因有助于提高舰载机起降的安全性.实验以"辽宁舰"航母的缩比模型为研究对象,在多功能循环水槽中研究其尾流结构.利用染色液流动显示技术和粒子成像测速技术显示和测量航母的尾流结构随航向角、流速和关键位置的变化.基于模型迎流宽度定义的雷诺数范围为2×10~4~4×10~4.研究表明,舰首滑跃甲板存在上洗气流且两侧产生流向涡,该涡结构对舰载机滑跃起飞时的升力产生影响;舰岛和舰尾后方存在着大量脱落涡,会对舰载机着舰时的气动力产生扰动,增加着舰操纵难度.  相似文献   

14.
基于较低雷诺数(1.48×104)条件下的Ahmed模型水洞实验,采用大涡模拟的方法研究了Ahmed模型绕流非定常流场,通过流场时均流线分布及相关频谱特性分析了Ahmed模型外部绕流流场的涡系结构特点及其演化过程,并绘制出该模型的外部流场拓扑结构图.结果表明,Ahmed模型顶部涡与侧向涡是模型前端来流发生了分离卷曲而形...  相似文献   

15.
本文用离散涡模型与边界层理论相结合的方法,研究了贺柱突然起动后初期和长期阶段中柱后尾流的流动结构和涡旋运动.计算初始阶段不定常边界层分离时,本文提出了一个能耦合外流、尾流作用的估算分离点的简单公式.运动趋于准定常后,边界层分离用Thweites方法计算.文中考虑了二次涡的影响和涡旋的粘性扩散效应.  相似文献   

16.
基于分离涡模拟方法的导管桨近尾流场及尾涡特性分析   总被引:1,自引:0,他引:1  
基于分离涡模拟(DES)方法对设计工况下导管桨的近尾流场及尾涡特性进行数值模拟.数值计算中选用SpalartAllmaras湍流模型封闭N-S方程,采用滑移网格技术及混合网格划分方法完成导管桨敞水性能数值计算.通过分析导管桨瞬态尾流场及尾涡空间结构发现:近尾流场中螺旋桨半径区域瞬态诱导速度大,尾流中分布着连续漩涡结构,尾流加速作用明显.导管桨尾涡主要由导管剪切层涡、叶片涡系及毂涡组成,叶片涡系中包含叶梢涡、叶根涡、毂涡及相邻梢涡带之间诱导产生的S形二次涡;导管桨尾涡结构中多重涡系之间产生复杂干扰,尾涡形态出现融合、扭曲、分解并逐渐扩散.  相似文献   

17.
为了研究涡旋射流控制流动分离的物理机理,基于大涡模拟方法对涡旋射流控制下的矩形扩压器流场和射流流向涡结构的生成、发展等动力学演化过程进行了数值研究.结果表明:射流产生的流向涡将主流高动量气流带入分离区,增加了边界层内气流流动方向的动量,使流动分离得到了抑制.射流流场的涡结构主要由射流剪切层涡、马蹄涡、尾涡组成,由于速度梯度大小的变化,使得射流剪切层涡系的结构随着时间推移从涡卷演化为涡环.对于脉冲射流,在低频脉冲下,射流产生的流向涡呈涡卷结构,流动控制效果明显.在高频脉冲下,射流剪切层涡演变成间歇涡环结构,流动控制效果减弱.通过对比脉冲频率和占空比对流动控制的影响发现,占空比为0.5、频率为20Hz的脉冲射流具有较好的流动控制效果.  相似文献   

18.
应用显式代数雷诺应力湍流模型对螺旋桨尾流中梢涡流场分布进行了数值研究,为了避免过高地预报梢涡涡核内湍流黏性耗散,对湍流模型进行了旋转和曲率修正.应用全六面体网格对螺旋桨计算域进行网格划分,为了避免数值离散误差,对梢涡区域进行了网格加密处理.计算结果表明:提出的尾流中梢涡流场分布数值模拟方法能够准确预报螺旋桨梢涡流场的分布及涡核位置,并准确反映了梢涡形成和发展过程中梢涡内主涡和次涡的关系,与实验测量结果基本一致.  相似文献   

19.
利用流体边界层上的电磁体积力控制流体边界层的周期性脱落与分离,限制尾流涡街的产生,从而实现消除涡流和减少涡生震动的目的.理论分析和实验研究表明,当圆柱表面包覆的电磁场作用参数N>1,包覆磁场强度B≥0.5 T,流体边界层表面电流密度j为103 A/m2数量级时,对于一般情况下的流场参数而言,流体边界层上的电磁体积力具有十分良好的消涡与减震控制作用效果.优化圆柱体表面的电磁场包覆范围,可以提高电磁消涡减震控制效率.当流体边界层上的电磁体积力方向与流体边界层的流动方向相反时,电磁力又具有显著的增涡增震控制作用效果.  相似文献   

20.
针对Ahmed类车体,在车身斜面选定位置处设置控制槽,采用证明为有效的大涡模拟数值方法,研究喷/吸流动主动控制方法的气动减阻机理及效果.基于流场数据分析发现喷射控制致使车体斜面上流动大分离发生,拖曳涡对得以消除,但尾迹区尺度增大,气动阻力上升;抽吸控制方法抑制和消除展向涡结构的产生及发展,但拖曳涡对未受显著影响,气动阻力下降.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号