首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
为研究轴流泵输送含沙水时过流部件的磨损情况,基于ANSYS CFX软件,应用非均相流模型和粒子模型,对轴流泵内固液两相流场进行数值模拟.重点分析了过流部件壁面处固相体积分数分布、固相滑移速度、体积分数分布及滑移速度与过流部件磨损的关系.结果表明:固相颗粒主要集中于叶片头部和叶片工作面,导致了叶片工作面磨损速度大于背面,并以进口头部的磨损破坏最为显著;固相滑移速度方向的不同,造成了叶片头部和叶片表面磨损类型的不同;固相滑移速度大的地方,固相体积分数较大,过流部件的磨损较为严重;在相同固相体积分数下,叶片工作面固相滑移速度大于背面;在叶片表面的同一部位,固相滑移速度均随着固相体积分数和颗粒直径的增大而增大,大颗粒对过流部件的磨损更为严重.  相似文献   

2.
小粒径固液两相流在螺旋离心泵内运动的数值分析   总被引:2,自引:0,他引:2  
针对螺旋离心泵内固液两相流动比较复杂的情况,以黄河含沙水为工作介质,采用改变沙粒粒径和含沙水体积分数的方法,对小粒径颗粒在螺旋离心泵内的流动进行了数值模拟.通过内流场的速度、压力与颗粒分布,分析了粒径大小对泵内固体颗粒运动的影响和进口固相初始体积分数对泵内压力和固相分布的影响,得出压力沿叶轮工作面和背面的分布规律以及固相体积分数沿叶轮轴面、叶片背面和工作面的分布规律,并在此基础上给出了螺旋离心泵内的磨损特性.  相似文献   

3.
为分析转速对深海采矿矿浆泵固液两相流的影响,文章采用RNGκ-ε湍流模型,运用Fluent软件对矿浆泵内固液两相流进行了数值模拟;比较了不同的转速对矿浆泵内压力分布、颗粒体积分数分布以及工作性能的影响;最后,矿浆泵在多种转速下进行试验,结果验证了数值模拟方法的准确性。研究结果表明:转速越大,叶轮对混合流体做功的有效性越好,混合浆体总压呈现大幅度上升,扬程也越大;不同转速工况下,平均颗粒体积分数值在叶片吸力面与压力面上的差异不大,说明叶片吸力面与压力面的磨损程度差异不大,并且导叶表面颗粒体积分数分布受转速的影响较轻。  相似文献   

4.
叶片圆盘泵固液两相流动规律数值模拟   总被引:7,自引:0,他引:7  
为研究叶片圆盘泵内流动规律,将叶片圆盘泵叶轮分为无叶区和叶片区,采用多重参考坐标系法模拟叶轮在泵体内的转动.采用Eulerian多相流模型、RNG k-ε湍流模型与SIMPLEC算法,利用Fluent软件对叶片圆盘泵内固液两相湍流进行数值模拟.在水力性能试验验证的基础上,得到叶轮无叶区和叶片区内压力和速度变化规律,以及固相体积分数分布规律.结果表明:旋流是叶轮无叶区内主要流动方式,无叶区内较大部分是低压区,存在叶片区高能流体流向无叶区的轴向流动;固相颗粒大部分集中于无叶区,叶片区颗粒浓度最高是在叶轮出口叶片工作面靠近无叶区处.分析认为大部分固体颗粒直接从无叶区排出而不经过叶轮叶片区是叶片圆盘泵具有良好固相通流能力而又对叶轮磨损较小的原因.  相似文献   

5.
采用雷诺时均N-S方程、RNG k-ε模型和相间耦合SIMPLE算法,以含沙水为介质,选用离散相模型和Finnie的塑性冲蚀磨损模型,运用冻结转子法,对一台200SH-9.3单级双吸离心泵内固液两相流动进行全三维数值模拟.获得不同粒径时叶片工作面、背面、轮缘内侧面及轮毂面磨损强度及固相体积分数的变化规律,并且对主要磨损部位的磨损深度进行预测.通过对比清水介质时泵外特性试验数据以及磨损试验数据与数值模拟结果,验证了数值计算方法的可靠性.结果表明:随着粒径的增大,叶片工作面、背面、轮缘内侧面和轮毂面的磨损强度增大;叶片工作面的主要磨损部位集中在进出口及靠近轮毂一侧,叶片背面主要磨损部位集中在进口及靠近轮毂一侧;叶轮主要磨损部位的磨损深度预测值与实际磨损结果基本一致.  相似文献   

6.
以螺旋离心泵为对象,以 fluent 软件为工具,利用标准k-ε数学模型对其内部三维流动进行数值模拟.计算清水和不同颗粒直径、不同体积分数的含沙水在螺旋离心泵内的液固两相流场,分析颗粒直径、体积分数、速度、压力等流动参数在泵内的分布规律及其相互影响.研究结果表明,按照颗粒的粒径范围和体积分数来设计叶片型线,可以减小叶片磨损,提高叶轮的使用寿命.  相似文献   

7.
为了研究大型立式轴流泵内部的空化特性问题,选取幸福泵站中叶轮直径为2.80m的机组作为研究对象,分别进行了试验研究和数值模拟,计算结果与试验结果相吻合,验证了数值模拟的准确性,得到该泵的汽蚀余量为4.86m,临界空化压力为48.50kPa。模拟结果表明:在泵的进口压力从47.00kPa下降到42.00kPa的过程中,空化持续长度从0.24迅速变化到1,空化迅速扩散至整个叶片;当流量大于设计值时,空化只发生在工作面靠近叶片进口边处,而当流量小于设计工况时,空化主要发生在叶片吸力面,且当液流角β′1小于翼型最大厚度处斜率所对应的角度α时,叶片吸力面形成1个空化区域,当β′1大于α时,叶片吸力面将会形成2个空化区域;当大型轴流泵发生空化时,增大进口压力至临界空化压力以上可以有效消除内部空化现象;通过调整运行流量至设计流量附近,可以有效减弱泵内部的空化程度。  相似文献   

8.
利用计算流体动力学分析软件,对离心式杂质泵的内部流场进行了数值模拟.计算了颗粒直径为0.076mm,固相体积分数为10%的两相流工况下的三维湍流流场,得到了蜗壳内的速度、压力和固相体积分数分布等流动信息.计算结果表明:自进口至最大半径处蜗壳内的速度不断减小,压力逐渐增大,颗粒体积分数随半径增大而增大.  相似文献   

9.
为了研究含沙水下单级双吸离心泵叶轮的磨损规律,采用比转速相等原则,用相似换算法将AABS150-365原型泵转换为模型泵.基于Mixture多相流模型和标准k-ε湍流模型,并结合SIMPLEC算法,在清水介质和固液两相流介质条件下对模型泵内部流动进行全流道三维定常数值模拟,分析在不同的初始固相体积分数和粒径下,叶片工作面和背面的固相相对速度和固相浓度的变化情况,并对叶轮的磨损量进行计算.通过对输送清水介质时泵外特性试验数据与数值模拟结果的对比,间接的验证了数值计算方法的可靠性.研究表明,随着粒径和固相体积分数的增大,叶片背面的固相相对速度和固相浓度较工作面高,从前盖板到后盖板固相相对速度和固相浓度是逐渐增高的;叶轮主要磨损部位在叶片背面的中后部,尤其是出口处.该研究对于分析叶轮磨损机理和优化叶轮设计来预防磨损有一定的参考价值.  相似文献   

10.
小流量工况下旋转离心叶轮内部流场PDA测量与分析   总被引:3,自引:1,他引:3  
在小流量工况下,采用PDA技术对一旋转离心叶轮内部的速度场进行了测量与分析,叶轮出口带有无叶扩压器.对流道内不同流面的数据进行了数据采集和统计.实验结果表明,在小流量工况下,沿周向叶轮内的相对速度从吸力面到压力面先减小后又增大,吸力面处的速度大于压力面;沿流动方向,因流道逐渐变宽,相对速度逐渐减小;靠近轮盖侧,流场结构复杂,在流道中部存在低速区;沿轴向,从盖侧至盘侧,相对速度逐渐增大,分布逐渐均匀;叶轮出口吸力面侧存在气流分离现象.  相似文献   

11.
为了研究核主泵叶轮能量转换规律与叶片载荷分布规律之间的关联性,基于RNG k-ε湍流模型,对不同流量工况下核主泵模型泵进行全三维定常数值计算.结果表明:从叶片吸力面到压力面,叶片做功能力逐渐增强;为了使叶轮获得较好的水力性能,叶片载荷的变化趋势应保持平缓,且其载荷峰值应在靠近叶轮出口处;根据不同流量工况下的叶轮性能曲线,叶片载荷有最优变化梯度;叶轮叶片中间流线上的动压载荷随着流量的增大逐渐减小,且动压载荷变化幅度较静压载荷更为明显,叶片动压载荷占总载荷的比重越低叶轮效率越高.  相似文献   

12.
以一台单级微型高速离心泵为研究对象,对其内部空化流动进行全流场数值模拟,分析了3种流动系数和不同空化数时该离心泵叶片流道内的空泡、静压以及相对速度分布规律。研究结果表明:空泡最先在叶片吸力侧前缘产生,该空泡区随着空化数的减小沿着叶片吸力侧向出口尾缘迁移和扩大,且呈非对称分布。在相同空化数下,随着流量系数的增加叶片流道内的空化区域变大;叶片吸力侧中间区域出现低速区并在叶片间流道内发展,同时,叶片尾缘处的高速区向叶轮内延伸,表明空泡造成叶轮内流道的堵塞,阻碍液体的流动;在叶片吸力面侧,空泡体积分数的最大值主要分布在叶片中间靠近轮毂的位置,而在压力面侧位于叶片前缘的机匣附近。初步建立了关于微型高速离心泵内空泡流动的一个较完整的认识。  相似文献   

13.
采用雷诺时均N-S方程、RNGk-ε模型和SIMPLE算法,以含沙水为介质,基于代数滑移混合物模型(algebraic slip mixture model,ASME)对一台单级双吸式离心泵内固液两相流动进行全三维不可压缩定常流动数值模拟,其中转子与定子之间耦合方式采用"冻结转子法"实现.通过对比清水及含沙水介质时泵外特性试验数据与数值模拟结果,验证了数值计算方法的可靠性.基于颗粒摩擦和碰撞模型对固相体积分数分别为5%、10%、15%时叶片工作面和背面摩擦磨损强度和碰撞磨损强度进行预测,结果表明:在同一固相体积分数时,从叶片进口至出口碰撞磨损强度逐渐增大,且工作面大于背面,摩擦磨损强度呈现先增大后减小,又逐渐增大的趋势;随着固相体积分数增大,叶片表面碰撞磨损强度和摩擦磨损强度逐渐增大,摩擦磨损强度沿着整个叶片均大于碰撞磨损强度.  相似文献   

14.
为研究低比转速离心泵内部气液两相流动的流型和气泡直径的变化规律,采用高速摄像技术对泵内部气液两相流动进行可视化试验,同时采用Eulerian-Eulerian非均相流模型和RNG k-ε湍流模型对泵内部气液两相流动进行数值模拟,得到不同进口气相体积分数φ_0下叶片表面中间流线气相体积分数随中间流线相对位置的变化规律。研究结果表明:当φ_0从0.4%增大到3.5%时,叶轮内部流型分别为泡状流、聚合泡状流、气团流和分层流,泵进出口压差损失逐渐增加;保持初始液相流量不变,当进气量由1 L/min增大到3 L/min时,气泡的平均直径由0.61 mm逐渐增大到0.85 mm;保持进气量不变,当液相流量由5 m~3/h增大到10 m~3/h时,气泡的平均直径由1.00 mm减小到0.82 mm;叶片压力面和吸力面中间流线上的气相体积分数从叶轮进口到出口先增大后逐渐降低,出口附近由于漩涡的存在而使气相体积分数略有增加,且随着φ_0增加,压力面的气相积聚区域逐渐扩大。  相似文献   

15.
泥沙颗粒直径及体积分数对高比转速离心泵的影响   总被引:2,自引:0,他引:2  
基于小粒径固液两相流在高比转速离心泵内运动比较复杂的情况,以黄河含沙水为工作介质,采用改变颗粒直径和含沙水颗粒体积分数的方法,借助Mixture多相流模型扩展的标准k-ε湍流方程与simple算法,应用CFD软件对小粒径颗粒在高比转速离心泵内的流动进行数值模拟.通过内流场的速度、压力与颗粒分布,分析粒径大小对泵内固体颗粒运动的影响和进口固相初始体积分数对泵内压力和固相分布的影响,给出离心式泵叶轮的磨损特性.计算结果表明,相同的泥沙体积分数条件下,水泵的扬程随着颗粒直径的增大而下降,相同的泥沙颗粒直径条件下,水泵的扬程随着含沙水流中泥沙体积分数的增大而下降.  相似文献   

16.
在两相混合模型的基础上,加载群体平衡模型,采用分组法对离心泵内部盐析两相流场进行数值模拟,得到了3种不同工况各尺寸盐析晶体颗粒的分布特性.预测了离心泵内液固两相流场中晶体颗粒的分布规律,与本项目前期试验结果总体趋势比较吻合,验证了群体平衡模型用于模拟伴有盐析现象两相流动的可行性.计算结果表明:叶片流道内,从压力面至吸力面颗粒平均粒径逐渐减小,流量增加,粒径较大颗粒向压力面聚集现象更加显著;涡室内颗粒平均粒径呈现的分布特征:主流区最小,内壁附近较大,离叶轮较远的壁面拐角处最大.此外,受相间传质及颗粒微观行为影响,不同粒径颗粒的组分数分布差异较大,从叶轮进口至出口,大粒径颗粒组分数逐渐增高,而中、小粒径颗粒的组分数分布趋势与之正好相反.  相似文献   

17.
应用雷诺涡黏模型、DDPM(density discrete phase model,稠密离散相模型)及颗粒直径Rosin-Rammler分布方法,以黄河含沙水为介质,对一台100LN-7型螺旋离心泵内固液两相流动进行全三维数值模拟,并与基于Mixture混合多项流模型的泵内两相流动数值模拟结果进行对比分析,得到不同粒径和固相体积分数对应的泵过流部件的磨蚀规律及磨蚀强度.结果表明:颗粒混合状态不同会形成不同的粒径分布,混合粒径中平均粒径增大导致叶片进口边及工作面轮缘线附近磨蚀强度增大,平均粒径为1mm时整台泵过流部件磨蚀率达到最大值,平均粒径继续增大磨蚀率反而降低;固相体积分数的增大使整台泵过流部件的磨蚀强度显著提高,叶片背面较其他部位磨蚀强度大;Mixture模型下固相体积分数较高部位与稠密离散相模型下颗粒磨蚀部位相对应,局部区域存在较高体积分数的固相颗粒增加了过流部件表面发生磨蚀的几率,但DDPM模型数值模拟表明只有部分颗粒参与局部区域的塑性磨蚀.  相似文献   

18.
低比转数离心泵叶轮内部流动的测量   总被引:2,自引:1,他引:2  
设计了一副5叶片的低比转数离心泵叶轮,并应用二维粒子图像速度仪(P IV)成功地测试了转速1250 r.m in-1下5个不同工况以及相同流量、转速分别为1 000,750 r.m in-1工况下叶轮内的瞬时流场.测试结果充分揭示了叶轮内相对速度矢量场的特征及其分布规律.结果表明:离心泵叶轮通道内液体受曲率、旋转产生的离心力和科里奥力作用,相对速度由叶片进口吸力面高、压力面低滑移为出口压力面高、吸力面低,叶轮内部的流动呈现非对称、非均匀特点;相同流量不同转速下叶轮内部流场的规律基本相似,但流动偏转角(Δβ)随转速增大而增大.  相似文献   

19.
应用雷诺涡粘模型(液相)、离散相流动模型(固相)和压力耦合流场计算法,对渣浆泵全流道内固液两相湍流场的固相颗粒的冲蚀行为进行数值模拟.研究泵转速、固相粒径和叶片参数对颗粒冲蚀特性的影响.研究结果表明:随着泵转速的提高或者粒径的增大,颗粒冲击叶片表面的位置逐步移向叶片的头部,颗粒的冲击速度和冲击角度随之增大;不同叶片参数的叶轮对固相颗粒的冲蚀行为影响明显;数值模拟的研究成果可应用于抗冲蚀磨损叶轮的设计.  相似文献   

20.
为了探明自吸泵的自吸机理.以外混式自吸泵为研究对象,利用CFX仿真软件中的VOF(volume of fluid)两相流模型和k-ε湍流模型,并结合网格滑移技术进行自吸过程非稳态数值模拟,分析了不同时刻下泵内气液两相体积、液相速度、出口气体体积分数和压力的分布情况.同时改变非稳态模拟的时间步长及总时长,监测自吸过程叶轮及蜗壳内监测点的压力变化.结果表明:自吸泵的吸气与排气主要集中在启动过程的初期和中期,叶轮入口和泵出口的气体体积分数分别超过60%和75%;叶轮出口的气液混合带导致了叶轮出口到蜗壳内侧大片区域内的流动紊乱现象,降低了叶轮的做功能力,进而影响了泵的正常排气;叶轮监测点压力脉动幅值与距叶片工作面的大小有关,蜗壳内监测点压力脉动幅值与距叶轮外缘的大小有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号