首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 682 毫秒
1.
研究了Nb掺杂对SnO2-Zn2SnO4系压敏材料电学性质的影响,研究结果表明:当Nb2O5的含量(摩尔分数)从0.05%增加到0.80%时,压敏电阻的压敏电压从28 V/mm增加到530 V/mm;对晶界势垒高度的分析表明:晶粒尺寸的迅速减小是样品压敏电压增高、电阻率增大的主要原因。本文对Nb含量增加引起晶粒减小的原因进行了解释。  相似文献   

2.
研究了Cr对(Co,Ta)掺杂的SnO2压敏材料电学性质的影响。当Cr2O3的含量从0增加到0.15mol%时,(Co,Ta)掺杂SnO2压敏电阻的击穿电压从206V/mm增加到493v/mm;1kHz时的相对介电常数从1968猛降至498;晶界势垒高度分析表明,SnO2晶粒尺寸的迅速减小是样品击穿电压增高、相对介电常数急剧降低和电阻率迅速增大的主要原因。对Cr含量增加引起SnO2晶粒减小的原因进行了解释。掺杂0.15mol%Cr2O3的SnO2压敏电阻非线性系数为24,击穿电压达498V/mm,在高压保护领域有很好的应用前景。  相似文献   

3.
采用传统固相法制备掺杂Nd2O3和Sm2O3氧化锌压敏陶瓷.采用X线衍射、扫描电镜和压敏电阻直流参数仪对其相组成、显微组织和电性能进行研究.研究结果表明:复合稀土掺杂有利于提高压敏陶瓷的综合电性能.掺杂Nd2O3和Sm2O3氧化锌压敏陶瓷,在固定Nd2O3含量时,随Sm2O3掺杂量增加,样品的平均晶粒尺寸从5.32μm减小到2.91 μm,电位梯度从389.3 V/mm增加到959 V/mm,非线性系数呈先降后升的变化,漏电流密度在0.44~8.66 μA/cm2之间变化.掺杂(摩尔分数)0.25% Nd2O3和0.50%Sm2O3氧化锌压敏陶瓷的电性能最优,电位梯度为959 V/mm,非线性系数为36.7,漏电流为2.25μA/cm2.制备的压敏陶瓷有望用于高电位梯度避雷器.  相似文献   

4.
利用固相反应法制备Co2O3掺杂Zn O-Bi2O3-Ti O2-Mn O2系低压压敏陶瓷,系统研究掺杂量、烧结温度和时间对压敏陶瓷结构、压敏电压梯度、漏电流密度和非线性系数的影响.结果表明:Co2O3掺杂量摩尔分数为1.0%,烧结温度为1 200℃,烧结时间为5 h时过压保护综合性能最好,其压敏电压梯度为17.1 V/mm,非线性系数为15.7,漏电流密度为0.34μA/mm2;Zn O压敏陶瓷电阻由晶粒界面电阻和晶粒内禀电阻组成,当外加电压低于临界电压时,陶瓷样品表现为大电阻,且电压对电阻影响不明显,约为7×104Ω,主要由界面电阻贡献;当外加电压高于压敏临界电压时,界面被击穿,陶瓷样品电阻突然减小至~10Ω,表现为晶粒内禀电阻特性.1  相似文献   

5.
用热分解和电沉积联合的方法制备了Ti/SnO2-Sb2O3/Fe-PbO2电极,并采用SEM、ICP和阳极极化曲线对所制备的电极进行了表征。以氨氮为目标污染物,考察了该电极的电催化氧化性能。研究结果表明:Ti/SnO2+Sb2O3/Fe-PbO2电极晶粒细小、致密,具有较高的析氧电位。采用该电极电催化氧化氨氮的最佳工艺条件为:电流密度为20 mA.cm-2、板间距为1 cm、温度为30℃、溶液pH值为5和Cl-浓度为1 100 mg.L-1,经电催化降解后,氨氮的去除率可达100%。  相似文献   

6.
采用溶胶-凝胶法和化学沉积法制备了Li4Ti4.75Cu0.25O12/SnO2复合活性材料。通过X射线衍射(XRD)、扫描电镜(SEM)、恒流充放电测试对材料进行结构、形貌表征及电化学性能测试。结果表明:Li4Ti4.75Cu0.25O12/SnO2复合活性物质能够进一步改善倍率性能的同时,循环性能也得到了很好的保证。当电压在1~3 V时,电流密度为1C倍率条件下,Li4Ti4.75Cu0.25O12/SnO2复合材料首次放电比容量高达202.55 m A·h/g。经过50次循环后,容量仍保持在202.51 m A·h/g,容量保持率高达99.98%。  相似文献   

7.
利用浸渍法制备了一系列不同掺杂量的V2O5/CeF3光催化剂,通过光催化降解丙酮实验考察了催化剂的光催化性能,并采用X射线衍射(XRD)、BET比表面积和紫外可见光谱(UV-vis)等方法表征了催化剂的物理化学性质.结果表明:少量(摩尔分数≤15%)V2O5的掺杂有利于催化剂比表面积的增加,有利于催化剂光催化性能的提高;而当V2O5含量进一步增加时,由于CeVO4晶相的出现,使催化剂的比表面积减小、禁带宽度增加,从而降低了催化剂的光催化活性.其中,摩尔分数为15%的V2O5/CeF3催化剂具有最佳的光催化性能,丙酮降解率可达85%.  相似文献   

8.
掺杂TiO2制备低压ZnO压敏陶瓷   总被引:2,自引:0,他引:2  
主要研究了晶粒助长剂TiO2、烧成条件等对ZnO低压压敏陶瓷电性能的影响。结果表明:TiO2的掺入能显著促进晶粒生长,降低压敏电压V1mA,但掺入量超过一定值后一方面会生成 阻止晶粒继续生长的晶界反应层,促使压敏电压又有所升高,另一方面会生成钛酸铋立方相而引起富铋晶界相含量的减少,导致非线性特性下。提高烧成温度可以促进晶粒生长,降低压敏电压,但温度过高时由于铋的挥发加剧,利用提高烧成温度降低压敏电压会引起非线性特性和漏流等性能的劣化。  相似文献   

9.
基于密度泛函理论的第一性原理平面波超软赝势方法,建立SnO2超晶胞模型并进行几何结构优化,对其能带结构进行了模拟计算.结果显示,导带底和价带顶位于G点处,表明SnO2是一种直接带隙半导体.同时,采用脉冲激光沉积法分别在蓝宝石衬底和Si衬底上制备出SnO2薄膜及n-SnO2/p-Si异质结.扫描电镜结果表明,SnO2薄膜晶粒均匀.霍尔测试结果表明,SnO2薄膜载流子浓度高达1.39X1020cm-3.吸收谱测试表明,SnO2薄膜光学带隙为3.37eV.n-SnO2/p-Si异质结的I-V曲线显示出其良好的整流特性.  相似文献   

10.
熔渣粘度对冶炼过程中渣金反应的传质有着至关重要的作用,适当的熔渣粘度能够有效促进渣金反应,提升传质效率。为了促进含铬熔渣中铬的回收利用,本文使用柱体旋转法研究了Al2O3含量变化对CaO-SiO2-Cr2O3-Al2O3渣粘度和结构的影响规律。熔渣在高温下表现出良好的牛顿流体行为。当Al2O3含量从0%增加到10wt%时,酸性渣的粘度首先从0.825增加到1.141 Pa·s,然后当Al2O3含量进一步增加到15wt%时,粘度降低到1.071 Pa·s。当Al2O3含量从0增加到15wt%时,碱性炉渣的粘度首先从0.084增加到0.158Pa·s,然后当Al2O3含量进一步增加到20wt%时,粘度降低到0.135 Pa·s。此外,含Cr2O3的炉渣比无Cr2O3的炉渣需要更少的Al2O3才能达到最大粘度;对于酸性和碱性炉渣,熔渣粘度达到最大值所需的Al2O3含量分别为10%和15%。熔渣的活化能变化规律与粘度结果一致。拉曼光谱表明,熔渣中仅有少量Al2O3时,Al以[AlO4]四面体形式出现,随着Al2O3含量的逐渐增加,[AlO4]四面体被[AlO6]八面体所取代,对硅酸盐结构的分峰解谱结果也与粘度结果一致。  相似文献   

11.
目的合成Ag负载SnO2/TiO2复合光催化剂,并对其在废水处理中的应用加以研究。方法以钛酸四丁酯、无水乙醇和四氯化锡为原料,采用光还原法制备载Ag纳米SnO2/TiO2光催化剂,以罗丹明B为模型污染物,借助XRD和UV-Vis等测试手段研究了SnO2/TiO2复合光催化剂的UV-Vis吸收光谱和光催化活性。结果纳米SnO2/TiO2光催化剂的最佳钛锡比为156∶1时的光催化剂具有较高的光催化活性;在氙灯照射下,Ag负载SnO2/TiO2的活性明显增强,具有很强的可见光活性。废水处理实验结果表明,太阳光照射2 h,炼油厂废水COD值由原始的844 mg/L降低至472mg/L,去除率为44.08%,照光5 h,COD去除率为76.78%,且色度和气味均全部去除。载Ag纳米SnO2/TiO2复合光催化剂(摩尔比为1∶1)对炼油厂废水COD有较高的去除效果。结论以最佳工艺条件下制备的TiO2为原料,采用光还原法成功制备出载Ag纳米SnO2/TiO2复合光催化剂,适用于采油厂工业废水的处理,太阳光下照射5 h,COD去除率可达76.78%。  相似文献   

12.
NanoSnO2酒精传感器的研究   总被引:1,自引:0,他引:1  
采用溶胶-凝胶技术分别在0.45、1.3 mol/L SnCl2乙醇溶液和0.9 mol/L SnCl2乙二醇溶液3种体系下合成了纳米SnO2粉体,通过XRD和TEM对其结构进行了表征,并对NanoSnO2传感器进行了气敏特性和研制条件的分析.结果表明制作传感器的最佳烧结温度为660℃,加热电压控制在5 V,使其表面温度达到200~250℃,此时传感器的气敏性能最好,而且在0.45 mol/L SnCl2乙醇溶液用溶胶-凝胶法制得的SnO2纳米酒精传感器的气敏性能最好.  相似文献   

13.
采用传统陶瓷工艺制备了Ni_2O_3掺杂的SnO_2-Zn_2SnO_4复合陶瓷,并测试了样品的压敏性质和介电频谱。压敏性质测试结果表明:随着Ni_2O_3掺杂量的增加,样品的非线性系数先减小后增大,压敏电压先升高后降低。当掺杂0.45%mol Ni_2O_3时,样品的非线性系数最小值为3.8,压敏电压最高值为63 V/mm。介电频谱显示:随着测试频率的增加,所有样品的相对介电常数εr均明显降低。低频下,样品的相对介电常数随着Ni_2O_3掺杂量的增加先减小再增大。当不掺杂Ni_2O_3,测试频率为40 Hz时,样品的相对介电常数达7 000左右,而其介电损耗却为最低值。Ni_2O_3掺杂引起SnO_2-Zn_2SnO_4复合陶瓷微观结构改变,从而使其压敏性质和介电性质改变。  相似文献   

14.
基于变插入层介电常数的多层绝缘结构能改善电场分布、提高真空沿面闪络特性.通过真空热压烧结制备了TiO2/Al2O3-Al2O3-TiO2/Al2O3(A-B-A)3层绝缘结构,A层w(TiO2)为0.5%到20%.测量了该绝缘结构的真空沿面闪络特性,发现闪络特性随w(TiO2)的增加而提高,当w(TiO2)为20%时,其脉冲初次闪络电压较同等厚度的Al2O3陶瓷提高了63%.研究发现:A层的介电常数可由w(TiO2)调控,介电常数的增大能有效降低真空-绝缘子-阴极三结合点处的电场强度;A层表面存在的TiO2颗粒可以减小二次电子发射系数并改善表面电荷分布;TiO2的电导率虽比Al2O3高,但其仍为绝缘体,即使TiO2含量较高时也不会形成贯穿的导电通道.  相似文献   

15.
SnO2纳米粉体制备条件的优化选择   总被引:2,自引:0,他引:2       下载免费PDF全文
采用溶胶-凝胶法制备SnO2纳米粉体,研究盐溶液起始反应浓度、反应温度、洗涤方式、焙烧温度等因素对SnO2纳米粉体性能的影响,并运用XRD、SEM、TG-DTA、UV-Vis等方法对SnO2纳米颗粒晶粒尺寸、表面形貌以及光学性能进行表征。结果表明,在盐溶液反应浓度为0.2mol/L、反应温度为70℃的条件下,采用混合洗涤沉淀法制备SnO2前驱体,其湿凝胶表面颗粒分散较为均匀;将SnO2前驱体于500℃温度下焙烧,可制得光学性能较好、平均晶粒尺寸约为30nm的SnO2粉体。  相似文献   

16.
Nb2O5掺杂及TiO2压敏陶瓷埋烧工艺的研究   总被引:3,自引:0,他引:3  
通过微结构分析、I-V特性及复阻抗频谱的测量,比较了埋烧和传统的裸烧工艺对于Nb^5 掺杂的TiO2压敏陶瓷材料的压敏电压和非线性系数的影响,结果表明掩埋法烧结可以降低该类陶瓷材料的压敏电压和非线性系数;考察了Nb2O5掺杂的作用,表明Nb^5 固溶于TiO2中取代Ti^4 使晶粒半导化.Nb2O5掺杂量对TiO2压敏陶瓷的I-V特性和微观结构都会有影响作用,适量Nb^5 的掺杂有助于晶粒的生长.  相似文献   

17.
通过改变65Cr4W3Mo2V钢中Nb的含量,研究了Nb对不同温度淬火回火钢的显微组织和机械性能的影响.结果表明:当加热温度超过1100℃时,随加热温度升高和Nb含量的增加,Nb对晶粒的细化作用越明显;随着Nb含量的增加,钢的机械性能提高,当Nb含量为0.25%(质量百分数,下同)时,作用最明显.  相似文献   

18.
采用传统陶瓷烧结工艺制备了(K0.44Na0.5Li0.06)(Nb0.89Ta0.05Sb0.06)O3+x(质量分数)Ga2O3无铅压电陶瓷,研究了掺杂不同Ga2O3含量对(K0.44Na0.5Li0.06)(Nb0.89Ta0.05Sb0.06)O3陶瓷的晶相、微观结构和电学性能的影响.研究结果表明:x在0~2变化范围内,陶瓷为单一四方相的钙钛矿结构,具有良好的铁电性能;随着体系中Ga2O3含量的增加,陶瓷的最佳烧结温度逐渐降低;Ga2O3的掺杂导致陶瓷晶粒变小,陶瓷的铁电四方相-顺电立方相的转变温度即居里温度TC有少许上升,但陶瓷的压电性能明显劣化.  相似文献   

19.
采用传统陶瓷烧结方法,制备了CaCu3Ti4O12(CCTO)-xZnO(x=0,0.05,0.20,0.60,1.00)陶瓷样品.应用X射线衍射仪及扫描电镜,分别确定了样品的物性和形貌.利用阻抗分析仪测定了不同频率和温度下材料的介电常数和介电损耗,研究了ZnO对CCTO材料的微观结构和介电性能的影响.结果表明:添加ZnO可促进CCTO晶界处小晶粒生长,抑制大晶粒生长,降低CCTO陶瓷样品高频范围的介电损耗.当x=1时,在1kHz~1MHz频率范围内,tanδ均小于1.1,并且可将陶瓷的压敏电压提高至100V/mm.这为优化CCTO材料性能、推进其在电容器方面的应用,提供了一定的实验依据.  相似文献   

20.
以SrCO3、SnO2和Fe3O4为原料,采用传统固相反应法制备了Fe掺杂SrSnO3陶瓷,并借助XRD和SEM,研究了SrFexSn1-xO3的相结构、形貌及Fe掺杂量对其电性能的影响.XRD图谱表明:未经烧结的样品是混合物,随着烧结次数的增加,样品的收缩增大,成品纯度变高,XRD杂峰减少.Fe掺杂SrSnO3陶瓷中随着Fe含量从0增加到1,烧结温度逐渐降低,从1480℃下降到1200℃,其晶格常数从0.806 9 nm下降到0.773 6 nm,晶体结构没有发生明显改变.SEM图片显示,靶材晶粒随着掺杂量的增加逐渐增大,由2.09μm增加到4.93μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号