首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
利用石墨烯优异的可调光学特性,设计了一种由石墨烯谐振器、SiO2介质层及金属反射层组成的可调谐双频完美吸收器,研究了石墨烯化学势、偏振角及尺寸大小对吸收器吸收性能的影响,并分析了共振频率处的电场模式,进一步解释吸收器的吸收原理.结果表明,吸收器在6.363 THz和8.987 THz处的吸收率分别为99.98%和99.99%;吸收峰位可通过改变石墨烯化学势进行有效调节,0°~80°范围内的任意偏振角下,峰值吸收率均可达90%以上;SiO2介质层厚度对吸收器的共振峰位几乎没有影响,但对峰值吸收率有一定影响,随着厚度的逐渐增加,吸收率先升高后降低,在厚度为3.1μm附近时实现完美吸收.以上结果说明,吸收器的高吸收率主要源于电磁共振作用.  相似文献   

2.
本文提出一种反向开口双金属谐振环超材料集成微流通道的可调谐太赫兹波吸收器.数值分析了超材料环形电磁矩的高效激发,讨论了环形电磁矩的共振吸收谱对微流介质层的介电参数与磁参数调控的响应.采用可电控液晶材料注入微流通道的方案,通过太赫兹透明电极施加外部电场控制液晶折射率变化,实现太赫兹超材料吸收器工作频率的大范围动态调谐.频率移动量超过100%的共振带宽,相对调谐量(Δf/f)可高达15%,频率调谐呈现良好的线性操作特征和近100%吸收率的完美吸收性能.所提出的可调谐太赫兹吸收器在太赫兹探测和微流生化传感领域具有广阔的应用前景.  相似文献   

3.
为了实现太赫兹波调制器件对太赫兹波的快速响应,设计一种基于二氧化钒(VO_2)电阻膜的太赫兹波段宽带可调谐超材料吸波体,研究不同温度时吸波体的吸收率,并通过监控表面电流分布,分析吸波体宽带吸收以及可调吸收的机理。结果表明:吸波体在温度为35℃时表现出宽带吸收特性,吸收率大于90%的频段频率为6.508~9.685 THz,带宽为3.177 THz,通过改变温度可以实现吸波体吸收率的调控;该吸波体对电磁波的吸收具有极化不敏感和宽角度吸收的特点。  相似文献   

4.
基于微波段二维树枝状左手材料的设计思想,设计了太赫兹波段的三维各向同性左手材料结构单元模型.采用金属Drude模型,运用等效媒质理论,仿真模拟了结构单元的电磁响应特性,计算了结构单元的有关电磁参数,分析了其缺陷效应和吸波特性.结果表明折射率在太赫兹波段1.171.38 THz之间为负值,并通过模拟负折射验证了其左手特性;在缺陷严重情况下,其左手特性将消失;通过对模型进行改进,在1.47 THz处出现了一个吸收峰,吸收率高达98%.该模型结构简单,研究结果为采用自上而下的方法制备三维太赫兹波段左手材料指出了途径.  相似文献   

5.
利用VO_2(二氧化钒)薄膜的电导率可调特性设计了一种太赫兹波段可调超宽带超材料吸波体.首先,模拟计算了不同温度时吸波体的吸收率,结果表明,当温度为45℃时吸波体在2.854 THz~8.938 THz的吸收率保持在90%以上,实现了电磁波的超宽带吸收;当温度从45℃逐渐增加到80℃时,吸波体在2.854 THz~8.938 THz的吸收率逐渐下降,实现了吸收率可调的功能;其次,通过对表面电流分布进行监控与分析,阐述了其电磁波宽带吸收及吸收率可调的机理;最后,模拟分析了温度为45℃时,入射波极化状态和入射角度对吸波体吸收特性的影响.结果表明,由于结构单元的旋转对称性,吸波体的吸收特性具有极化不敏感的特点;随着电磁波入射角度的增大,其吸收率逐渐降低.  相似文献   

6.
基于电磁超材料的电磁谐振通过合理设计可以实现太赫兹波段的频率响应,为太赫兹波调控开辟了新的道路,特别是利用多层电磁超材料设计的太赫兹功能器件.本文综述了当前国内外基于多层电磁超材料在太赫兹波段技术的应用研究进展,分类介绍了其在太赫兹滤波器、吸收器、偏振器等方面的应用,最后对多层超材料在太赫兹技术应用的发展趋势作了探讨.  相似文献   

7.
通过MATLAB编码图案控制Computer Simulation Technology (CST) Microwave Studio计算模拟软件,针对电磁超材料吸收器正向设计只能基于规则图案的现状,采用遗传算法对超材料吸收器进行逆向设计研究.以自动仿真为基础,用CST计算随机不同的初始图形结果,然后在遗传算法中迭代优化,不断用CST计算新出现图形的吸收率,最后优化出吸收率高的吸收器.首先进行单目标遗传算法优化设计吸收器,结果表明,在各个太赫兹波段,最高吸收峰的吸收率均大于96%,次高峰大于94%,平均吸收率均大于87%.然后进行多目标遗传算法优化设计,不再局限于一个单独的吸收率指标,能够加上如非目标波段的低吸收率的性能指标,实现单频吸收的功能.  相似文献   

8.
设计了一种基于Au/VO_2结构的可调控红外吸收器,由谐振贴片、介质夹层和金属背板3层结构组成。利用VO_2的温控相变特性,将部分田字形Au贴片结构替换为VO_2,通过改变环境温度对吸收器的吸收峰值、位置和带宽进行调控。由于VO_2具有温控相变特性,吸收器会在不同温度下表现出不同的吸波效果。当温度高于相变温度时,吸收器在远红外大气窗口形成一个吸收率为99.68%的吸收峰;当温度低于相变温度时,吸收器在中、远红外大气窗口分别形成吸收率为89.29%和99.83%的吸收峰。利用表面电流和磁场分布对吸收器的吸波机理进行分析,发现反向平行分布的表面电流激发出磁偶极子,进而产生强烈的磁谐振,达到吸波效果。最后分析了电磁波的极化方式和入射角度以及介质材料属性对吸波效果的影响,发现此吸收器具有较好的极化稳定性和大角度吸收性,并且吸收峰随着介电常数的增大向长波方向漂移。  相似文献   

9.
设计了一款宽带/双频可切换的石墨烯太赫兹吸波器,该吸波器由周期性单元结构组成,包含石墨烯层、介质层和金属层.通过调节石墨烯的化学势,吸波器可以实现宽带吸收与双频吸收模式之间的切换.吸波器在宽带模式下0.98~1.51 THz频率区间内的吸收率达90%以上;双频模式下频率为1.35 THz和1.75 THz的吸收率分别为98.65%和99.60%.此外,该吸波器在0°~45°入射角范围内均能保持较好的吸波性能.  相似文献   

10.
设计了一种基于狄拉克半金属的超材料太赫兹宽频及双频吸波体.该吸波体由三层结构组成,上层为狄拉克半金属层,中间为介质层,底层为金属基底.首先设计了U型的单峰吸波体,该吸波体能够实现在6.02THz处的完美吸收.通过研究单峰吸波体的表面电流分布可知,入射太赫兹能量的吸收主要来自沿U型臂方向上电场引起的电偶极子振荡.然后通过多个吸收峰叠加扩展带宽的原理,设计出了双频和宽频吸波体.仿真结果表明,本文设计的双频吸波体能够在5.33THz和5.86THz处实现94.7%及91%的吸收率,宽频吸波体在5.59THz到5.90THz之间吸收率可达90%以上.同时,利用狄拉克半金属电导率的可调节性,通过改变狄拉克半金属的费米能级,无需优化几何结构和重新制造结构,便可以实现共振吸收峰频率的动态调谐.  相似文献   

11.
基于电磁超材料的太赫兹吸收器通过合理设计结构尺寸和材料参数能够实现近完美吸收,因而受到学术界的关注,近几年对太赫兹吸收器的研究发展很快.本文综述了基于电磁超材料的太赫兹吸收器的研究进展,分别从理论、结构和性能对太赫兹吸收器的研究进行了介绍,最后对太赫兹吸收器的未来发展和待解决的问题进行了探讨.  相似文献   

12.
为了解决传统太赫兹(THz)探测器吸收效率低,频率范围小的问题,提出将双层超表面吸收阵列结构与钽酸锂热释电探测器相贴合,构成宽带太赫兹超表面热释电探测器。采用MATLAB和CST联合仿真的优化方法对超表面结构进行按需优化;使用ANSYS对热释电探测器进行仿真分析,得到敏感层、绝热层等特征参数对太赫兹热释电探测器的温度变化率以及响应电流的影响。结果表明,采用超表面阵列结构提高了全THz波段的探测性能,凳型热释电探测器在给定条件下的平均热释电电流输出为31.52 pA。使用超表面作为吸收结构可以使热释电探测器具有连续且高效的吸波特性,为宽带太赫兹探测器的设计提供参考。  相似文献   

13.
利用二氧化钒(VO_2)绝缘体相-金属相的相变特性,将VO_2与超材料吸波体相结合设计了一种多频谱可调超材料吸波体.采用CST Microwave Studio软件对其在太赫兹波段和红外波段的吸收率曲线进行仿真模拟,仿真结果表明,当温度设置为高温状态(80℃)时,VO_2表现为金属相,此时在太赫兹波段表现为超吸收的特性;而当温度设置为低温状态(40℃)时,VO_2表现为绝缘体相,此时在红外波段表现为超吸收的特性;随后分别仿真模拟了VO_2为金属相时VO_2十字架臂长和VO_2为绝缘相时金属十字架臂长对吸波体吸收特性的影响;最后对该吸波体表面电流分布及内部的空间电场进行仿真与分析,并阐述了其电磁吸波及多频谱可调的机理.最终结果表明该超材料吸波体可以通过改变温度分别实现对太赫兹波段和红外波段的超吸收,在多频谱隐身、多频谱探测和多频谱通信等领域具有潜在的应用价值.  相似文献   

14.
基于平行金属线的太赫兹准全向超材料吸波体   总被引:1,自引:0,他引:1  
该文基于平行金属线设计了一种具有准全向吸波特性的太赫兹超材料吸波体,其准全向吸波特性是通过提高超材料的结构对称性实现的.理论和仿真结果表明:随着超材料结构对称性的提高,超材料吸波体的极化敏感度逐渐降低直至达到任意极化吸波.仿真的不同入射角下的吸收率与表面电流分布表明:平行于介质基板的磁场分量在平行金属线之间激发的反向平行电流导致了结构的电磁谐振,因而在极宽的入射角下该超材料吸波体仍能对电磁波进行高效吸收.提取的等效阻抗实部表明:可以通过调节基板两侧金属线的尺寸,来实现吸收频率处超材料吸波体一侧与自由空间近似阻抗匹配,另一侧与自由空间阻抗不匹配,从而使得反射和传输同时最小、吸收最高.仿真的能量损耗分布表明:该吸波体的强吸收主要源于基板的介质损耗.该太赫兹吸波体可能在爆炸物探测和材料识别等领域具有广泛的应用.  相似文献   

15.
基于三维狄拉克半金属(3D DSM)的载流子迁移率高、可调谐性好的优点,开展了太赫兹波可调谐双频吸收器(THz MMA)的研制工作.研究表明,通过破坏微结构的对称性,THz MMA可以在太赫兹波段实现近似完美吸收,并且随着非对称度的增加,吸收峰从1.322 THz蓝移至1.721 THz,调制深度为23.2%,共振峰Q因子接近20.此外,通过改变费米能级,3D DSM吸收器的共振谱线可以在很大范围内调节,如费米能级在0.05~0.15 eV内变化时,低频(高频)吸收峰在0.826~0.993 THz (1.098~1.371 THz)内调节,相应的调制深度为17%(20%).该研究结果对于设计高性能的太赫兹波器,如探测器、滤波器、传感器件等很有帮助.  相似文献   

16.
提出一种基于金属-石墨烯多层结构并可在太赫兹区域实现从双频、多频到宽频的完美超材料吸收器.该超材料吸收器由含金电极的2种不同半径的石墨烯圆盘组成,并且每个石墨烯圆盘中的费米能级可通过加在金电极和金基底上的门电压独立控制,从而可实现其共振吸收频率的独立或同步调控,这样在不改变吸收器几何尺寸的情况下,可得到双频、多频和宽频吸收的动态调控.此外,由于结构的几何对称性,吸收器对入射光偏振不敏感,适合较大的入射倾角.结构简单和可调控性使单层石墨烯吸收器在传感、探测、隐身等领域有着潜在的应用价值.  相似文献   

17.
提出了一种基于超材料的太赫兹低通角度滤波器,该角度滤波器是一种仅允许法向入射太赫兹波透过而将其他方向传播太赫兹波滤除的器件,其结构为螺旋的左右对称开口的金属双环.仿真结果表明,在0.94 THz频率处,该器件的透射效果随着入射角的增大明显降低,且对法向入射的透射率达到94.4%,3 dB角域带宽达到25.0°.所提出的太赫兹角度滤波器在角度波谱分析、雷达数据处理、隐私保护、高信噪比检测器等领域具有重要的应用前景.  相似文献   

18.
为了实现在不同背景温度条件下的红外隐身, 需要研究具有可调发射率的红外隐身材料. 此外, 多波段兼容隐身技术在现代军事和科技中具有重要的研究价值. 本文设计了一种利用单一多层膜结构实现多光谱可调谐的超材料吸收器. 利用Ge2Sb2Te5 (GST)相变材料的晶态和非晶态不同属性, 该结构实现了在大气窗口8~13 μm波长范围内最大吸收率吸收从94.93%到9.19%的可控变化. 而且通过控制中间态, 结构对电磁波的吸收率可以实现连续变化. 同时, 该结构具有基于干涉效应的可调结构色, 通过改变顶层薄膜的厚度, 器件的颜色可以发生变化. 因而同时实现了在红外及可见光两个波段对电磁波的独立调控功能. 该超材料吸收器具有红外-可见光兼容隐身的潜在应用.  相似文献   

19.
利用传输矩阵法研究了含各向异性人工材料的一维结构的电磁波吸收特性,分析了入射波频率、极化方向、入射角以及材料厚度对电磁波吸收率的影响.结果表明,电磁波垂直入射到单层各向异性人工材料中,尽管s波和p波的吸收率极大值出现在不同的频率,但两种波的吸收率随层厚增大的变化规律一致.斜入射时,不管入射角如何变化,s波和p波的吸收率都随着层厚的增大而趋于定值,该极限值由入射角决定.改变入射波频率,当某一频率对应磁导率张量的矩阵元的实部为负值,对应极化波的吸收率随层厚的增大而趋于定值;当磁导率张量的矩阵元的实部为正值,对应极化波的吸收率随层厚的增大而振荡,且峰值出现在层厚为λ/2的整数倍时.含各向异性人工材料的三层结构的吸收率优于单层结构.以上结论可为使用各向异性人工材料制作电磁波吸收器提供理论支持.  相似文献   

20.
建立一个基于石墨烯的太赫兹超材料的周期单元结构,利用时域有限差分法进行仿真计算,深入解析石墨烯超材料与太赫兹电磁波相互作用出现的电磁诱导透明现象。分析了TM模式下该结构的电磁诱导透明发生的机理,通过改变结构材料、入射角度、石墨烯条的尺寸,分析反射峰的频点和透明窗口变化。计算结果表明:该结构在5.59 THz处由于共振耦合产生干涉相消,形成一个透明窗口;当石墨烯条的宽度增加时,共振频点发生蓝移,共振强度也明显增强,但透明窗口宽度并没有明显的变化;增加电磁波的入射角度,共振耦合强度减弱,但耦合频点基本无变化,说明该结构产生的电磁诱导透明效应对电磁波入射角不敏感。该研究结果在太赫兹反射器、非线性器件等方面有着潜在的应用价值,给太赫兹超材料器件的设计提供了新的思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号