首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Shin YI  Schunck CH  Schirotzek A  Ketterle W 《Nature》2008,451(7179):689-693
The pairing of fermions lies at the heart of superconductivity and superfluidity. The stability of these pairs determines the robustness of the superfluid state, and the quest for superconductors with high critical temperature equates to a search for systems with strong pairing mechanisms. Ultracold atomic Fermi gases present a highly controllable model system for studying strongly interacting fermions. Tunable interactions (through Feshbach collisional resonances) and the control of population or mass imbalance among the spin components provide unique opportunities to investigate the stability of pairing-and possibly to search for exotic forms of superfluidity. A major controversy has surrounded the stability of superfluidity against an imbalance between the two spin components when the fermions interact resonantly (that is, at unitarity). Here we present the phase diagram of a spin-polarized Fermi gas of (6)Li atoms at unitarity, experimentally mapping out the superfluid phases versus temperature and density imbalance. Using tomographic techniques, we reveal spatial discontinuities in the spin polarization; this is the signature of a first-order superfluid-to-normal phase transition, and disappears at a tricritical point where the nature of the phase transition changes from first-order to second-order. At zero temperature, there is a quantum phase transition from a fully paired superfluid to a partially polarized normal gas. These observations and the implementation of an in situ ideal gas thermometer provide quantitative tests of theoretical calculations on the stability of resonant superfluidity.  相似文献   

2.
Greiner M  Regal CA  Jin DS 《Nature》2003,426(6966):537-540
The realization of superfluidity in a dilute gas of fermionic atoms, analogous to superconductivity in metals, represents a long-standing goal of ultracold gas research. In such a fermionic superfluid, it should be possible to adjust the interaction strength and tune the system continuously between two limits: a Bardeen-Cooper-Schrieffer (BCS)-type superfluid (involving correlated atom pairs in momentum space) and a Bose-Einstein condensate (BEC), in which spatially local pairs of atoms are bound together. This crossover between BCS-type superfluidity and the BEC limit has long been of theoretical interest, motivated in part by the discovery of high-temperature superconductors. In atomic Fermi gas experiments superfluidity has not yet been demonstrated; however, long-lived molecules consisting of locally paired fermions have been reversibly created. Here we report the direct observation of a molecular Bose-Einstein condensate created solely by adjusting the interaction strength in an ultracold Fermi gas of atoms. This state of matter represents one extreme of the predicted BCS-BEC continuum.  相似文献   

3.
Feld M  Fröhlich B  Vogt E  Koschorreck M  Köhl M 《Nature》2011,480(7375):75-78
Pairing of fermions is ubiquitous in nature, underlying many phenomena. Examples include superconductivity, superfluidity of (3)He, the anomalous rotation of neutron stars, and the crossover between Bose-Einstein condensation of dimers and the BCS (Bardeen, Cooper and Schrieffer) regime in strongly interacting Fermi gases. When confined to two dimensions, interacting many-body systems show even more subtle effects, many of which are not understood at a fundamental level. Most striking is the (as yet unexplained) phenomenon of high-temperature superconductivity in copper oxides, which is intimately related to the two-dimensional geometry of the crystal structure. In particular, it is not understood how the many-body pairing is established at high temperature, and whether it precedes superconductivity. Here we report the observation of a many-body pairing gap above the superfluid transition temperature in a harmonically trapped, two-dimensional atomic Fermi gas in the regime of strong coupling. Our measurements of the spectral function of the gas are performed using momentum-resolved photoemission spectroscopy, analogous to angle-resolved photoemission spectroscopy in the solid state. Our observations mark a significant step in the emulation of layered two-dimensional strongly correlated superconductors using ultracold atomic gases.  相似文献   

4.
Chin JK  Miller DE  Liu Y  Stan C  Setiawan W  Sanner C  Xu K  Ketterle W 《Nature》2006,443(7114):961-964
The study of superfluid fermion pairs in a periodic potential has important ramifications for understanding superconductivity in crystalline materials. By using cold atomic gases, various models of condensed matter can be studied in a highly controllable environment. Weakly repulsive fermions in an optical lattice could undergo d-wave pairing at low temperatures, a possible mechanism for high temperature superconductivity in the copper oxides. The lattice potential could also strongly increase the critical temperature for s-wave superfluidity. Recent experimental advances in bulk atomic gases include the observation of fermion-pair condensates and high-temperature superfluidity. Experiments with fermions and bosonic bound pairs in optical lattices have been reported but have not yet addressed superfluid behaviour. Here we report the observation of distinct interference peaks when a condensate of fermionic atom pairs is released from an optical lattice, implying long-range order (a property of a superfluid). Conceptually, this means that s-wave pairing and coherence of fermion pairs have now been established in a lattice potential, in which the transport of atoms occurs by quantum mechanical tunnelling and not by simple propagation. These observations were made for interactions on both sides of a Feshbach resonance. For larger lattice depths, the coherence was lost in a reversible manner, possibly as a result of a transition from superfluid to insulator. Such strongly interacting fermions in an optical lattice can be used to study a new class of hamiltonians with interband and atom-molecule couplings.  相似文献   

5.
Schunck CH  Shin YI  Schirotzek A  Ketterle W 《Nature》2008,454(7205):739-743
Fermionic superfluidity requires the formation of particle pairs, the size of which varies from the femtometre scale in neutron stars and nuclei to the micrometre scale in conventional superconductors. Many properties of the superfluid depend on the pair size relative to the interparticle spacing. This is expressed in 'BCS-BEC crossover' theories, describing the crossover from a Bardeen-Cooper-Schrieffer (BCS)-type superfluid of loosely bound, large Cooper pairs to Bose-Einstein condensates (BECs) of tightly bound molecules. Such a crossover superfluid has been realized in ultracold atomic gases where high-temperature superfluidity has been observed. The microscopic properties of the fermion pairs can be probed using radio-frequency spectroscopy. However, previous work was difficult to interpret owing to strong final-state interactions that were not well understood. Here we realize a superfluid spin mixture in which such interactions have negligible influence and present fermion pair dissociation spectra that reveal the underlying pairing correlations. This allows us to determine that the spectroscopic pair size in the resonantly interacting gas is 20 per cent smaller than the interparticle spacing. These are the smallest pairs so far observed in fermionic superfluids, highlighting the importance of small fermion pairs for superfluidity at high critical temperatures. We have also identified transitions from fermion pairs to bound molecular states and to many-body bound states in the case of strong final-state interactions.  相似文献   

6.
Stewart JT  Gaebler JP  Jin DS 《Nature》2008,454(7205):744-747
Ultracold atomic gases provide model systems in which to study many-body quantum physics. Recent experiments using Fermi gases have demonstrated a phase transition to a superfluid state with strong interparticle interactions. This system provides a realization of the 'BCS-BEC crossover' connecting the physics of Bardeen-Cooper-Schrieffer (BCS) superconductivity with that of Bose-Einstein condensates (BECs). Although many aspects of this system have been investigated, it has not yet been possible to measure the single-particle excitation spectrum (a fundamental property directly predicted by many-body theories). Here we use photoemission spectroscopy to directly probe the elementary excitations and energy dispersion in a strongly interacting Fermi gas of (40)K atoms. In the experiments, a radio-frequency photon ejects an atom from the strongly interacting system by means of a spin-flip transition to a weakly interacting state. We measure the occupied density of single-particle states at the cusp of the BCS-BEC crossover and on the BEC side of the crossover, and compare these results to that for a nearly ideal Fermi gas. We show that, near the critical temperature, the single-particle spectral function is dramatically altered in a way that is consistent with a large pairing gap. Our results probe the many-body physics in a way that could be compared to data for the high-transition-temperature superconductors. As in photoemission spectroscopy for electronic materials, our measurement technique for ultracold atomic gases directly probes low-energy excitations and thus can reveal excitation gaps and/or pseudogaps. Furthermore, this technique can provide an analogue of angle-resolved photoemission spectroscopy for probing anisotropic systems, such as atoms in optical lattice potentials.  相似文献   

7.
8.
Koschorreck M  Pertot D  Vogt E  Fröhlich B  Feld M  Köhl M 《Nature》2012,485(7400):619-622
The dynamics of a single impurity in an environment is a fundamental problem in many-body physics. In the solid state, a well known case is an impurity coupled to a bosonic bath (such as lattice vibrations); the impurity and its accompanying lattice distortion form a new entity, a polaron. This quasiparticle plays an important role in the spectral function of high-transition-temperature superconductors, as well as in colossal magnetoresistance in manganites. For impurities in a fermionic bath, studies have considered heavy or immobile impurities which exhibit Anderson's orthogonality catastrophe and the Kondo effect. More recently, mobile impurities have moved into the focus of research, and they have been found to form new quasiparticles known as Fermi polarons. The Fermi polaron problem constitutes the extreme, but conceptually simple, limit of two important quantum many-body problems: the crossover between a molecular Bose-Einstein condensate and a superfluid with BCS (Bardeen-Cooper-Schrieffer) pairing with spin-imbalance for attractive interactions, and Stoner's itinerant ferromagnetism for repulsive interactions. It has been proposed that such quantum phases (and other elusive exotic states) might become realizable in Fermi gases confined to two dimensions. Their stability and observability are intimately related to the theoretically debated properties of the Fermi polaron in a two-dimensional Fermi gas. Here we create and investigate Fermi polarons in a two-dimensional, spin-imbalanced Fermi gas, measuring their spectral function using momentum-resolved photoemission spectroscopy. For attractive interactions, we find evidence for a disputed pairing transition between polarons and tightly bound dimers, which provides insight into the elementary pairing mechanism of imbalanced, strongly coupled two-dimensional Fermi gases. Additionally, for repulsive interactions, we study novel quasiparticles--repulsive polarons--the lifetime of which determines the possibility of stabilizing repulsively interacting Fermi systems.  相似文献   

9.
Sommer A  Ku M  Roati G  Zwierlein MW 《Nature》2011,472(7342):201-204
Transport of fermions, particles with half-integer spin, is central to many fields of physics. Electron transport runs modern technology, defining states of matter such as superconductors and insulators, and electron spin is being explored as a new carrier of information. Neutrino transport energizes supernova explosions following the collapse of a dying star, and hydrodynamic transport of the quark-gluon plasma governed the expansion of the early Universe. However, our understanding of non-equilibrium dynamics in such strongly interacting fermionic matter is still limited. Ultracold gases of fermionic atoms realize a pristine model for such systems and can be studied in real time with the precision of atomic physics. Even above the superfluid transition, such gases flow as an almost perfect fluid with very low viscosity when interactions are tuned to a scattering resonance. In this hydrodynamic regime, collective density excitations are weakly damped. Here we experimentally investigate spin excitations in a Fermi gas of (6)Li atoms, finding that, in contrast, they are maximally damped. A spin current is induced by spatially separating two spin components and observing their evolution in an external trapping potential. We demonstrate that interactions can be strong enough to reverse spin currents, with components of opposite spin reflecting off each other. Near equilibrium, we obtain the spin drag coefficient, the spin diffusivity and the spin susceptibility as a function of temperature on resonance and show that they obey universal laws at high temperatures. In the degenerate regime, the spin diffusivity approaches a value set by [planck]/m, the quantum limit of diffusion, where [planck]/m is Planck's constant divided by 2π and m the atomic mass. For repulsive interactions, our measurements seem to exclude a metastable ferromagnetic state.  相似文献   

10.
11.
Low-dimensional systems provide beautiful examples of many-body quantum physics. For one-dimensional (1D) systems, the Luttinger liquid approach provides insight into universal properties. Much is known of the equilibrium state, both in the weakly and strongly interacting regimes. However, it remains a challenge to probe the dynamics by which this equilibrium state is reached. Here we present a direct experimental study of the coherence dynamics in both isolated and coupled degenerate 1D Bose gases. Dynamic splitting is used to create two 1D systems in a phase coherent state. The time evolution of the coherence is revealed through local phase shifts of the subsequently observed interference patterns. Completely isolated 1D Bose gases are observed to exhibit universal sub-exponential coherence decay, in excellent agreement with recent predictions. For two coupled 1D Bose gases, the coherence factor is observed to approach a non-zero equilibrium value, as predicted by a Bogoliubov approach. This coupled-system decay to finite coherence is the matter wave equivalent of phase-locking two lasers by injection. The non-equilibrium dynamics of superfluids has an important role in a wide range of physical systems, such as superconductors, quantum Hall systems, superfluid helium and spin systems. Our experiments studying coherence dynamics show that 1D Bose gases are ideally suited for investigating this class of phenomena.  相似文献   

12.
Regal CA  Ticknor C  Bohn JL  Jin DS 《Nature》2003,424(6944):47-50
Following the realization of Bose-Einstein condensates in atomic gases, an experimental challenge is the production of molecular gases in the quantum regime. A promising approach is to create the molecular gas directly from an ultracold atomic gas; for example, bosonic atoms in a Bose-Einstein condensate have been coupled to electronic ground-state molecules through photoassociation or a magnetic field Feshbach resonance. The availability of atomic Fermi gases offers the prospect of coupling fermionic atoms to bosonic molecules, thus altering the quantum statistics of the system. Such a coupling would be closely related to the pairing mechanism in a fermionic superfluid, predicted to occur near a Feshbach resonance. Here we report the creation and quantitative characterization of ultracold 40K2 molecules. Starting with a quantum degenerate Fermi gas of atoms at a temperature of less than 150 nK, we scan the system over a Feshbach resonance to create adiabatically more than 250,000 trapped molecules; these can be converted back to atoms by reversing the scan. The small binding energy of the molecules is controlled by detuning the magnetic field away from the Feshbach resonance, and can be varied over a wide range. We directly detect these weakly bound molecules through their radio-frequency photodissociation spectra; these probe the molecular wavefunction, and yield binding energies that are consistent with theory.  相似文献   

13.
Strong interactions between electrons in a solid material can lead to surprising properties. A prime example is the Mott insulator, in which suppression of conductivity occurs as a result of interactions rather than a filled Bloch band. Proximity to the Mott insulating phase in fermionic systems is the origin of many intriguing phenomena in condensed matter physics, most notably high-temperature superconductivity. The Hubbard model, which encompasses the essential physics of the Mott insulator, also applies to quantum gases trapped in an optical lattice. It is therefore now possible to access this regime with tools developed in atomic physics. However, an atomic Mott insulator has so far been realized only with a gas of bosons, which lack the rich and peculiar nature of fermions. Here we report the formation of a Mott insulator of a repulsively interacting two-component Fermi gas in an optical lattice. It is identified by three features: a drastic suppression of doubly occupied lattice sites, a strong reduction of the compressibility inferred from the response of double occupancy to an increase in atom number, and the appearance of a gapped mode in the excitation spectrum. Direct control of the interaction strength allows us to compare the Mott insulating regime and the non-interacting regime without changing tunnel-coupling or confinement. Our results pave the way for further studies of the Mott insulator, including spin-ordering and ultimately the question of d-wave superfluidity.  相似文献   

14.
文章基于描述零温超流费米气体的序参量方程,通过费曼传播子方法,解析了关闭光晶格和谐振子势后,超流费米原子气体的相干演化,以及仅关闭光晶格,费米超流在谐振子势中的周期演化。  相似文献   

15.
主要计算了处于Bose—Einstein-Condensation·Bardeen-Cooper-Schrieffer(BEC—BCS)过渡区的超流费米原子气体的动力学自旋结构因子,并研究了它与频率的依赖关系.发现当波矢q处于(0.05kF,kF)范围内时,在小于超流能隙值的频率范围内动力学自旋结构因子会呈现一个峰.我们认为这个峰是由超流能隙下的自旋激发造成的.  相似文献   

16.
Understanding the dynamics of correlated many-body quantum systems is a challenge for modern physics. Owing to the simplicity of their Hamiltonians, (4)He (bosons) and (3)He (fermions) have served as model systems for strongly interacting quantum fluids, with substantial efforts devoted to their understanding. An important milestone was the direct observation of the collective phonon-roton mode in liquid (4)He by neutron scattering, verifying Landau's prediction and his fruitful concept of elementary excitations. In a Fermi system, collective density fluctuations (known as 'zero-sound' in (3)He, and 'plasmons' in charged systems) and incoherent particle-hole excitations are observed. At small wavevectors and energies, both types of excitation are described by Landau's theory of Fermi liquids. At higher wavevectors, the collective mode enters the particle-hole band, where it is strongly damped. The dynamics of Fermi liquids at high wavevectors was thus believed to be essentially incoherent. Here we report inelastic neutron scattering measurements of a monolayer of liquid (3)He, observing a roton-like excitation. We find that the collective density mode reappears as a well defined excitation at momentum transfers larger than twice the Fermi momentum. We thus observe unexpected collective behaviour of a Fermi many-body system in the regime beyond the scope of Landau's theory. A satisfactory interpretation of the measured spectra is obtained using a dynamic many-body theory.  相似文献   

17.
E W Hudson  K M Lang  V Madhavan  S H Pan  H Eisaki  S Uchida  J C Davis 《Nature》2001,411(6840):920-924
Magnetic interactions and magnetic impurities are destructive to superconductivity in conventional superconductors. By contrast, in some unconventional macroscopic quantum systems (such as superfluid 3He and superconducting UGe2), the superconductivity (or superfluidity) is actually mediated by magnetic interactions. A magnetic mechanism has also been proposed for high-temperature superconductivity. Within this context, the fact that magnetic Ni impurity atoms have a weaker effect on superconductivity than non-magnetic Zn atoms in the high-Tc superconductors has been put forward as evidence supporting a magnetic mechanism. Here we use scanning tunnelling microscopy to determine directly the influence of individual Ni atoms on the local electronic structure of Bi2Sr2CaCu2O8+delta. At each Ni site we observe two d-wave impurity states of apparently opposite spin polarization, whose existence indicates that Ni retains a magnetic moment in the superconducting state. However, analysis of the impurity-state energies shows that quasiparticle scattering at Ni is predominantly non-magnetic. Furthermore, we show that the superconducting energy gap and correlations are unimpaired at Ni. This is in strong contrast to the effects of non-magnetic Zn impurities, which locally destroy superconductivity. These results are consistent with predictions for impurity atom phenomena derived from a magnetic mechanism.  相似文献   

18.
19.
Coupling between electrons and phonons (lattice vibrations) drives the formation of the electron pairs responsible for conventional superconductivity. The lack of direct evidence for electron-phonon coupling in the electron dynamics of the high-transition-temperature superconductors has driven an intensive search for an alternative mechanism. A coupling of an electron with a phonon would result in an abrupt change of its velocity and scattering rate near the phonon energy. Here we use angle-resolved photoemission spectroscopy to probe electron dynamics-velocity and scattering rate-for three different families of copper oxide superconductors. We see in all of these materials an abrupt change of electron velocity at 50-80 meV, which we cannot explain by any known process other than to invoke coupling with the phonons associated with the movement of the oxygen atoms. This suggests that electron-phonon coupling strongly influences the electron dynamics in the high-temperature superconductors, and must therefore be included in any microscopic theory of superconductivity.  相似文献   

20.
A Luttinger liquid is an interacting one-dimensional electronic system, quite distinct from the 'conventional' Fermi liquids formed by interacting electrons in two and three dimensions. Some of the most striking properties of Luttinger liquids are revealed in the process of electron tunnelling. For example, as a function of the applied bias voltage or temperature, the tunnelling current exhibits a non-trivial power-law suppression. (There is no such suppression in a conventional Fermi liquid.) Here, using a carbon nanotube connected to resistive leads, we create a system that emulates tunnelling in a Luttinger liquid, by controlling the interaction of the tunnelling electron with its environment. We further replace a single tunnelling barrier with a double-barrier, resonant-level structure and investigate resonant tunnelling between Luttinger liquids. At low temperatures, we observe perfect transparency of the resonant level embedded in the interacting environment, and the width of the resonance tends to zero. We argue that this behaviour results from many-body physics of interacting electrons, and signals the presence of a quantum phase transition. Given that many parameters, including the interaction strength, can be precisely controlled in our samples, this is an attractive model system for studying quantum critical phenomena in general, with wide-reaching implications for understanding quantum phase transitions in more complex systems, such as cold atoms and strongly correlated bulk materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号