首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以彰武地区稠油为研究对象,以室内实验为依据,讨论了温度、含水率对该地区稠油黏度的影响.实验表明,该区块稠油黏度对温度比较敏感,随着温度的升高呈现指数式减小,黏温曲线的拐点在50℃左右.原油黏度-含水率关系曲线转相点的含水率在50%左右;在该转相点之前,黏度随含水率的升高而增大;在转相点处达到最大值;转折点之后黏度随含水率的升高而降低.因此可以通过提高井筒温度降低原油黏度,同时控制原油的含水率远离黏度-含水率曲线的转相点.此外还针对该区块稠油黏度大、开采难的问题,进行了化学降黏剂的筛选评价.在所评价的11种降黏剂中,HEOR-5的降黏效果最好.  相似文献   

2.
针对胜利油田王庄稠油黏度大、开采难的问题,对其进行了降黏实验研究.首先测定了不同温度下王庄稠油的黏度.原油的黏温实验表明:王庄原油在温度超过60℃时,黏度随温度的升高变化趋缓.为王庄原油研制了降黏剂JDLH.影响降黏剂JDLH对王庄稠油降黏效果的因素有:降黏剂加量、油水比、降黏温度和矿化度等.实验结果表明:降黏剂JDLH最佳加入量为0.3%,最佳油水体积比为7∶3,降黏温度为50℃;降黏剂JDLH可耐盐15 000 mg/L.用5种不同的降黏剂对王庄稠油做了降黏实验,实验结果表明,降黏剂JDLH的降黏效果最好.  相似文献   

3.
旅大27-2油田开发已经进入到蒸汽吞吐中后期,目前油田含水上升快,蒸汽吞吐开发效果变差。为了更好地对旅大27-2油田进行储量评价以和开发动用。详细研究了稠油族组成、温度、油水乳化、压力、N_2溶解及降黏剂对旅大27-2油田稠油黏度的影响,然后通过流动性实验证实了稠油在储层中的流动性主要受到黏度的影响,明确了温度、油水乳化和降黏剂的使用是影响稠油黏度的主要因素。当温度从50℃升高到100℃时,旅大27-2油田稠油油样黏度从3 665 mPa·s降低到172 mPa·s,降低了95.31%;50℃时,70%含水原油黏度为不含水原油黏度的21.1倍;50℃、降黏剂含量为1.0%时,降黏率为94%。有效地避免或者减弱油水乳化形成油包水乳状液,是有效提高油田开发效果的重要途径。  相似文献   

4.
为降低含水稠油黏度,提高其输送能力,提出了纳米催化剂和微波协同作用的降黏方式。通过响应面实验设计方法,以微波加热功率、加热温度和纳米催化剂浓度为影响因素进行研究,测量得到不同情况下的黏温曲线,通过测得的黏度计算降黏率。通过优化得到不同含水率下的最优降黏处理方法,探究油包水型稠油乳状液在不同含水率下3种因素间的相互作用以及含水率变化对纳米微波协同降黏效果的影响。实验结果表明,在同一含水率下,降黏率随催化剂浓度的增加而增大,随微波功率的增大先增后降,随温度的变化规律与含水率的大小有关。对于不同含水率的稠油,为达到最优降黏效果,随着含水率增大,所需催化剂浓度先增后降,所需的微波功率相近,而温度有一定差别。说明高含水的油包水型乳状液的降黏效果更优,这可为稠油降黏技术提供理论依据。  相似文献   

5.
为实现普通稠油热采向降黏剂驱的转换,首先通过实验评价了降黏剂的静态性能参数,然后通过岩心驱替实验开展了降黏剂驱注入特征和驱油效果研究,其次通过微观可视化实验研究了降黏剂驱提高采收率的机理,最后运用非线性混合法则的方法,得到了降黏剂在数值模拟中的实现方法;并对物理模拟结果进行了数值模拟计算和历史拟合。研究结果表明,稠油降黏剂驱过程中能够形成稳定的水包油乳状液;稠油驱替过程可划分三个阶段:启动压力突破阶段、压力快速下降阶段和压力低位运行阶段;降黏剂驱可以降低稠油启动压力梯度,减小驱替压力,实施降黏剂驱后采收率提高了12. 4%,总采收率达到46. 6%;降黏剂驱提高采收率的主要机理是降低原油黏度,减少残余油饱和度;采用非线性混合规则表征了原油黏度随降黏剂浓度的非线性变化规律,该表征方法可以应用于数值模拟计算,计算结果和实验值拟合得较好;先导试验表明该技术能够降低水井注入压力,降水增油效果显著,试验区内油井全面见效。  相似文献   

6.
新疆塔河油田深层稠油在井筒举升过程中,由于温度的降低,原油逐渐失去流动性。稠油降黏是有效降低井筒举升摩阻的途径。根据现场掺降黏剂工艺,建立了室内高温高压井筒流动模拟实验装置,实验研究了温度、压力及流速对稠油井筒举升流动摩阻的影响,得到了不同降黏方式井筒举升摩阻梯度分布,在已有井筒压降计算模型的基础上,构筑了室内井筒流动模拟装置与实际井筒之间的压降换算关系,得到了不同降黏方式塔河原油在实际井筒中的压力分布。实验结果表明:原油在垂直井筒中举升摩阻随压力和流速的增加而增大,随着温度的升高而降低,但流速越大,井筒流动摩阻增加趋势渐缓。在井下3 000 m处掺降黏剂使稠油更易举升至井口,降黏效果为复合降黏剂油溶性降黏剂掺稀降黏。  相似文献   

7.
新疆深层稠油在井筒举升过程中,由于温度的降低,原油会逐渐失去流动性。稠油降黏是有效降低井筒举升摩阻的途径。根据现场掺降黏剂工艺,建立了室内高温高压井筒流动模拟实验装置,实验研究了温度、压力及流速对稠油井筒举升流动摩阻的影响,得到了不同降黏方式井筒举升摩阻梯度分布,在已有井筒压降计算模型的基础上,构筑了室内井筒流动模拟装置与实际井筒之间的压降换算关系,得到了不同降黏方式塔河原油在实际井筒中压力分布。实验表明:原油在垂直井筒中举升摩阻随压力和流速的增加而增大,随着温度的升高而降低,但流速越大,井筒流动摩阻增加趋势渐缓。在井下3000m处掺降黏剂使稠油更易举升至井口,降黏效果:复合降黏剂>油溶性降黏剂>掺稀降黏。  相似文献   

8.
大庆普通稠油粘温及流变性研究   总被引:1,自引:0,他引:1  
以大庆江37普通稠油为研究对象,利用Anton Paar MCR301旋转流变仪开展了稠油黏温及流变特性的实验研究。通过室内实验,测定了大庆普通稠油在不同温度、压力及剪切速率条件下的黏度,研究了稠油流变性特性及屈服应力与温度的关系。研究结果表明,稠油的黏度对温度非常敏感,随温度升高而大幅度降低,在拐点温度处之前,稠油黏-温关系曲线随压力变化较大;在拐点温度处之后,压力对黏度影响不大。流变性曲线说明,低温40℃条件下稠油油样属于Bingham塑性流体。随着温度升高,原油流变性表现为牛顿流体特性。  相似文献   

9.
海上常规稠油油田前期通常采用注水开发,由于原油黏度相对较高;并且目标储层黏土矿物含量较高,存在较强的水敏现象等原因,稠油油田注水开发效果逐渐变差。为此,以新型改性烷基磺酸盐为主要降黏驱油剂,通过复配以非离子表面活性剂、渗透剂以及高效防膨剂,研制出了一种适合于目标稠油区块的新型复合降黏驱油体系。分析了复合降黏驱油作用机理,并进行了室内实验评价。结果表明,新型复合降黏驱油体系能够有效降低稠油黏度,降低油水界面张力,对储层钻屑具有较好的防膨作用;并且与地层水的配伍性良好;该体系可以使岩心水驱后的采收率提高30%以上,具有良好的降黏驱油效果。现场应用结果表明,经新型复合降黏驱油体系处理的三口井,平均日产油量提高48.6m3/d,平均含水率下降82.7%,达到了良好的增产效果。  相似文献   

10.
超临界条件下CO2和原油互溶性强,可使得原油黏度降到1/10。因此采用超临界CO2实现稠油长距离降黏输送是可行的。利用试验环道通过实验的方法对CO2稠油降黏效果进行了分析,并且分析了压力温度对降黏率的影响,得到了超临界CO2超稠油降黏特性,并推荐了溶解后稠油黏度的计算模型。  相似文献   

11.
温度对不同黏度稠油油水相渗的影响规律   总被引:1,自引:0,他引:1  
为了研究油层温度和原油黏度对稠油油水相渗的促进机制,基于NB35-2稠油油藏一维岩心流动模拟系统,模拟了不同黏度原油在不同环境温度下的水驱渗流特征.结果表明,稠油油水相渗曲线表现出水相渗透率非常低的特点;当含水饱和度大于50%后,油层中形成联通的水流通道,导致水加剧突进;温度升高,油水两相共流区范围增大,残余油饱和度降低,但高于油藏温度时,随着温度继续升高,油水相渗曲线变化较小;原油黏度增大削弱了油水的流动性,降低了采收率.对比温度和黏度对油水相渗的影响规律,认为温度主要是通过改变油水黏度比而影响油水相渗曲线.  相似文献   

12.
使用自主研制的稠油井筒掺稀降黏评价装置对春光油田稠油进行了掺稀降黏室内实验,研究了温度场对掺稀效果的影响,同时对掺稀位置及掺稀比进行了优化。通过设定4个恒温水浴温度分别为90℃、70℃、50℃及40℃来近似模拟井筒不同位置处的温度,开展了不同条件下的掺稀效果研究。结果表明,在70℃井段,稠油降黏率为41%~69%;泵下掺稀降黏效果最好,出口处(40℃)原油降黏率达到86%。在模拟日产量为6 t的实验过程中,对5种不同掺稀比的掺稀效果进行了对比分析,得到掺稀比在18%~22%时,原油黏度可以满足井筒安全生产的要求。  相似文献   

13.
稠油油溶性降黏剂ASAM/C/O的合成与评价   总被引:1,自引:0,他引:1  
分析了造成稠油高黏的原因及降黏剂的降黏机理,对降黏剂的分子结构进行设计.先以丙烯酸(A)、苯乙烯(S)、丙烯酰胺(AM)为原料合成了中间产物——三元共聚物ASAM,然后以ASAM、多元醇、长链烷基酸为原料通过两步酯化反应合成了一种稠油油溶性降黏剂ASAM/C/O.通过正交实验确定出中间产物ASAM的最佳合成条件:单体质量比m(丙烯酸)∶m(苯乙烯)∶m(丙烯酰胺)为6∶3∶2,引发剂质量分数1.3%,反应时间为6 h.降黏剂ASAM/C/O的最佳合成条件∶m(ASAM)∶m(C)∶m(O)取6∶2∶1.5,长链烷基酸的碳链长度取18,反应温度在110~120℃之间,反应时间为6 h左右.降黏剂ASAM/C/O具有较好的降黏效果;降黏率与温度有关,随温度降低,降黏率升高;加剂处理后稠油体系的活化能大幅度降低,说明体系内的结构强度减弱.  相似文献   

14.
化学降黏驱是提高稠油采收率的新方法,现有的数值模拟方法不能准确描述降黏驱过程中各组分、相间的物理化学变化过程。结合油水两相控制方程、降黏剂浓度传质方程及辅助方程,构建了浓度场-渗流场全耦合化学降黏驱替数学模型,获得了乳液黏度-含水率、降黏剂溶液黏度-浓度及降黏剂溶液与原油界面张力的辅助方程,采用具有有界性的高阶迎风格式克服了一阶迎风格式的不足,提高了浓度散度的计算精度,优选有限体积方法提高了解的准确性,并对降黏驱数值模拟结果与实验结果进行了验证。在此基础上开展了降黏驱数值化实验,优化了降黏驱的注采参数。研究表明:建立的模型可以表征降黏剂的控黏效果;随着降黏剂注入浓度、注入量和注入速度的增加,采出程度逐渐增加,但采收程度增长率逐渐减小;0.4%浓度的降黏剂采收程度提高幅度最大;合理注入量介于0.2~0.6 PV,PV(pore volume)表示孔隙体积;推荐选用段塞较大、段塞中降黏剂浓度较高的方案;合理的注入速度应根据油田自身产能设计。该研究为稠油油藏降黏驱开发方式优化与调整提供了重要技术手段。  相似文献   

15.
 酸化返排液与原油混合可形成稳定性强的乳状液,影响原油的脱水及原油沉降罐的安全运行.通过室内实验考察温度、破乳剂加量、pH 值及降黏剂加量对乳状液黏度和破乳效果的影响,并采用显微镜观察不同阶段乳状液微观形态变化.实验表明:酸化返排液与原油混合成的乳状液其黏度随温度升高先急剧下降,后平缓下降,在温度低于40℃时乳状液稳定性较强,温度50~60℃时,随着温度升高,乳状液脱水率上升幅度不大,综合选取破乳温度为50℃;添加破乳剂有利于降低乳状液黏度,但效果不明显,破乳剂加量越大,乳状液破乳效果越好,当破乳剂加量达到150 mg/L 后,随破乳剂用量加大,乳状液脱水率上升幅度不大,综合选取破乳剂加量为150 mg/L;调节酸化返排液pH 值至6.0~7.0 有利于乳状液破乳,pH 值越高,油水界面变得棱角分明,脱出水的原油结构更加紧密;加入降黏剂后,乳状液脱水速度明显加快.研究结论对指导油田酸化改造后,井口初期返出的乳状液实施破乳具有借鉴作用.  相似文献   

16.
为了进一步加强对稠油蒸汽泡沫驱油过程中流体力学性能的认识,在油藏压力7.60 MPa下,利用高温高压流变仪测得了不同条件下稠油蒸汽泡沫共混体系的流变曲线.实验结果表明:稠油蒸汽泡沫驱油体系均为假塑性流体,其流变方程能很好地关联幂律模型;随蒸汽相饱和度和泡沫剂浓度升高,体系表观黏度增大;随蒸汽干度和温度升高,体系表观黏度降低;在低剪切速率时,表观黏度和温度关系满足Arrhenius方程,随着剪切速率增大,表观黏度和温度关系逐渐偏离Arrhenius方程;黏流活化能的绝对值随剪切速率增大而降低,在低剪切速率时,表观黏度对于温度变化更敏感.  相似文献   

17.
含水原油流变规律实验研究   总被引:1,自引:0,他引:1  
从大庆油田现场实际出发全面研究高含水原油流变特性 ,即含水原油视粘度与含水率的关系 ,含水原油视粘度与剪切速率的关系 ,含水原油视粘度与油温的关系等 ,给出了测试的相应曲线并对曲线进行了分析 .该油田油水乳状液转相点在 w( H2 O)为 65 .2 %左右 ,在转相点以前是以油为外相 ,水为内相的 W/O型乳状液 ,视粘度随含水量上升而增加 ,且受温度影响较大 ,同时剪切速率影响也相当明显 .随着剪切速率的增加 ,转相点的视粘度明显下降 .在转相点以后 ,形成水为外相 ,W/O型乳状液为内相的 ( W/O/W)水包油包水型复杂的多重乳状液 ,乳状液视粘度随含水量增加而降低 ,且受温度和剪切速率影响 ,乳状液视粘度进入高含水区后变化趋于平缓 .用曲面拟合方法回归出流变参数方程 .通过现场取样和数据处理分析可知 ,含水原油其流变特性可由幂律本构方程表示 .这一结论为准确计算高含水原油管道工艺参数奠定了基础  相似文献   

18.
原油乳状液加剂降低转相点实验研究   总被引:1,自引:1,他引:0  
王朋  刘保君 《科学技术与工程》2012,12(13):3229-3230,3244
转相点是原油乳状液输送时一个重要的参数。在转相点后输送时阻力较小,而在转相点前输送时阻力较大。为了节能降耗,降低输送成本,减小集输过程中的流动阻力,在室内开展了向含水原油中加入DODE系列流动改进剂后的流动实验,研究加剂后转相点变化规律。实验结果表明:含水原油中添加DODE系列流动改进剂可以使含水原油的转相点由原来的50%~70%提前到了30%~50%,形成具有适度稳定性的水包油型原油乳状液,降低了原油乳状液的表观黏度。  相似文献   

19.
含水原油流变规律实验研究   总被引:7,自引:0,他引:7  
从大庆油田现场实际出发全面研究高含水原油流变特性,即含水原油视粘度与含水率的关系,含水原油视粘度与剪切速率的关系,含水原油视粘度与油温的关系等,给出了测试的相应曲线并对曲线进行了分析,该油田油水乳状液转相点在ω(H2O)为65.2%左右,在转相点以前是以油为外相,水为内相的W/O型乳状液,视粘度随含水量上升而增加,且受温度影响较大,同时剪切速率影响也相当明显,随着剪切速率的增加,转相点的视粘度明显下降,在转相点以后,形成水为外相,W/O型乳状液为内相的(W/O/W)水包油包水型复杂的多重乳状液,乳状液视粘度随含水量增加而降低,且受温度和剪切速率影响,乳状液视粘度进入高含水区后变化趋于平缓,用曲面拟合方法回归出流变参数方程,通过现场取样和数据处理分析可知,含水原油其流变特性可由幂律本构方程表示,这一结论为准确计算高含水原油管道工艺参数奠定了基础。  相似文献   

20.
通过丙酮溶剂法合成了降黏剂辛基酚聚氧乙烯醚羧酸钠(RJY-8),考察了其在不同条件下的热稳定性和耐盐性,降黏剂质量分数、油水比、温度对其降黏效果的影响,以及助溶剂、聚合物对它的降黏增效作用,得到了适应于塔河稠油的降黏配方。结果表明:RJY-8具有较高的热稳定性,在高盐地层水中仍能保持优异的界面活性;增大RJY-8用量、降低油水比以及升高乳化温度均可提高塔河稠油的降黏率;尿素及部分水解聚丙烯酰胺均可提高RJY-8的降黏效果,二者复配使用能降低降黏剂的成本。因此,选用RJY-8与部分水解聚丙烯酰胺、尿素复配作为塔河稠油的降黏配方。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号