首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
一九八○年以来,包钢在控制高炉炉瘤,扭转生产局面方面取得了很突出的成绩,为了配合攻关,我们进行了部分实验室研究工作。根据这些实验可以认为包钢高炉结瘤的根本原因在于钾钠氟的循环积累,形成大量易熔的、表面张力很低的、非常容易粘附炉衬与炉料的不稳定的初渣(即短渣)物相。产生易熔物相是因为碱金属化合物、碱金属氟化物多为易熔成分,并且碱金属还能与枪晶石、莫莱石结合而形成易熔物相,这些都是高炉上部频繁结瘤的主要原因。为了减少碱金属的危害,抑制高炉炉瘤的形成,除应加强选烧排碱以外,还应提高炉渣排碱能力。为此作者系统地研究了炉温、炉渣碱度、MgO、CaCl_2诸因素对炉渣排碱能力的影响,并在此基础上提出减少高炉碱害的措施。此外作者还着重讨论了作为排碱剂的 CaCl_2的反应机理。  相似文献   

2.
石家庄钢铁公司高炉的碱金属(K_2O Na_2O)负荷较高,为5.25~5.5kg/tFe。其中由烧结矿带入的碱金属占碱金属负荷的70%左右,球团矿和焦炭各占碱金属负荷的10%左右,其它炉料带入量较少。石钢高炉总排碱率为73%~79%,其中炉渣排碱率为68%~77%,炉顶煤气排碱率为5%左右。石钢高炉蓄积率保持在0.227~0.282kg/Fe·h之间,高炉处于蓄积期,且蓄积率较高。所以,建议石钢高炉的碱金属负荷临界值选取4.0kg/tFe。  相似文献   

3.
减轻高炉冶炼中碱金属危害的有效途径是炉渣排碱·探讨按D_n最优设计安排实验,以寻求含氧化钛高炉渣排碱去硫的适宜条件。实验得到了氧化镁、碱度及反应温度、时间等变量之间的变化规律与氧化钠挥发率和每百克渣中吸硫率的数学模型。利用该模型分析排碱去硫的有利因素以确定渣中氧化钠挥发率及吸硫率的最佳值。从而找到冶炼此种球团矿的适宜操作条件。  相似文献   

4.
石家庄钢铁公司高炉的碱金属(K2O+Na2O)负荷较高,为5.25~5.5kg/tFe.其中由烧结矿带入的碱金属占碱金属负荷的70%左右,球团矿和焦炭各占碱金属负荷的10%左右,其它炉料带入量较少.石钢高炉总排碱率为73%~79%,其中炉渣排碱率为68%~77%,炉顶煤气排碱率为5%左右.石钢高炉蓄积率保持在0.227~0.282kg/Fe·h之间,高炉处于蓄积期,且蓄积率较高.所以,建议石钢高炉的碱金属负荷临界值选取4.0kg/tFe.  相似文献   

5.
随着优质铁矿资源的消耗,钢铁企业可利用的铁矿原料品位逐渐降低。因此,高铝质铁矿资源越来越受到钢铁企业的关注,但高铝原料在高炉冶炼过程中会带来渣铁黏稠、炉温偏低、冶炼安全等一系列问题。本研究中采用FactSage热力学软件分析Al2O3质量分数对高炉渣平衡物相、熔化温度、相析出温度的影响以及高铝渣液相区变化和黏度变化,旨在为高炉冶炼高铝原料提供一定的基础支撑。研究发现:炉渣为低铝(5%~10%)含量时,随着Al2O3含量增加,炉渣熔化温度升高,析出相为黄长石相和纯物质相,高炉渣黏度变化不大,炉渣中SiO2含量高,炉渣黏度过高,不适合高炉冶炼;炉渣为中铝(10%~15%)含量时,随着Al2O3含量增加,炉渣熔化温度升高,析出相为尖晶石相、黄长石相和纯物质相,高炉渣黏度增加幅度略有提高,Al2O3含量对高炉渣性质影响较小,增加炉渣二元碱度对炉渣黏度降低效果较明显;炉渣为高铝(15%~30%)含量时...  相似文献   

6.
高炉冶炼高钛型钒钛磁铁矿的主要困难是由钛渣的特殊性质引起的,它们具有脱硫能力低、熔化性温度高以及高温还原变稠等特点,采用质量良好的原料,严格控制生铁含硅,选择适宜的炉渣碱度是解决高炉冶炼高钛型钒钛磁铁矿的主要措施。  相似文献   

7.
首钢为降低82B生产成本,提高产品质量,在高炉原料中加入了钒钛球团矿.钒钛球团矿的加入导致转炉生产化渣慢,脱磷效率低,溅渣护炉效果不佳等问题.为了解决高钒钛铁水转炉生产82B所遇到的问题,本文以首钢炼钢厂转炉生产82B工艺为研究对象,利用Fluent数值模拟结合工业试验共同优化了转炉高VTi铁水冶炼82B供氧制度.通过供氧制度的优化,提高了转炉处理高VTi铁水的能力,从而保障首钢生产出高品质低成本的82B.  相似文献   

8.
本文采用偏光、反光及高温显微镜的研究方法为主,并配合x射线分析和扫描电子显微镜分析等研究方法,较详细地研究了包钢高炉炉瘤中的矿物组成及其显微结构的特征。研究表明: (1)在包钢炉瘤中存在有大量的钾、钠硅铝酸盐矿物,如钾霞石(K_2O·Al_2O_3·2SiO_2)、白榴石(K_2O·AlO_3·4SiO_2)、斜长石(Na2O·Al_2·6SiO_2—CaO·Al_2O_3·2SiO_2)、氟云母(KAl_3Si_3O_(10)F_2—K(Fe,Mg)_3AlSi_3O_(10)F_2)等,还有氟硅钾石(K_2SiF_6)、冰晶石(Na_3AlF_6)、枪晶石(3Ca0.2SiO_2.CaF_2)萤石(CaF_2)、碳酸钾(K_2CO_3)硅酸钾K_2SiO_3)、硅铝酸钾(K_2O.Al_2O_3.SiO_2)及氟化钾(KF)、氟化钠(NaF)等。研究认为钾、钠碱金属在炉内的循环富集,是高炉结瘤的根本原因。 (2)除钾、钠碱金属在炉内循环富集外,同时还存在着氟的循环富集,研究认为氟对高炉炉瘤的生成起到一定的促进作用。 (3)通过对高炉炉瘤以及高炉终渣矿物组成的研究证明,防止高炉结瘤最根本的措施是减少入炉原料中的碱金属含量。在当前入炉原料条件下,采用低碱度酸渣冶炼,以利在高炉终渣中生成碱金属硅酸盐矿物,提高终渣排碱率,减少碱金属在炉内的富集,已为当前生产中防止结瘤的有效措施。  相似文献   

9.
本文着重介绍,通过改进VTi铁水及半钢炼钢的造渣工艺,调整炼钢炉渣的矿物组成,从而减轻炉渣对炉衬的浸蚀作用,达到提高转炉炉衬寿命的目的。使攀钢最高炉龄由375炉提高到578炉。  相似文献   

10.
针对目前高炉的冶炼条件,分析高炉炉渣中Al2O3的来源以及对炉渣脱硫的危害。从热力学和动力学角度分析了Al2O3对炉渣脱硫能力的影响。通过实验研究了Al2O3含量以及MgO/Al2O3对炉渣脱硫能力的影响。实验结果表明Al2O3含量过高不利于高炉渣的脱硫。Mg0/Al2O3适当提高可以增强Al2O3含量较高时炉渣的脱硫能力。  相似文献   

11.
包头铁矿中含有铌(Nb_2O_50.12~0.65%),虽然品位较低,但总贮量较大(70万吨以上的金属铌),铁矿石在富选铁的过程中,铌损失于尾矿达60%。所谓二流程是将含稀土和铌较多的包头中贫矿直接入高炉冶炼,可以获得含稀土氧化物15%以上的高炉渣作为生产低磷稀土硅铁合金的原料,另外可以得到含铌较高(Nb>0.20%)的铁水,比一般选矿→高炉铁水含铌(<0.08%)高一倍以上,不仅有利于从铁水回收铌的后续工序,而且不经选矿因之大大提高铌的总回收率。  相似文献   

12.
针对国外进口块矿碱金属含量高,计算了国丰钢铁高炉碱金属平衡关系.通过试验研究得到了改进高炉排碱能力的措施,为高炉生产提供了理论基础.  相似文献   

13.
通过分析锌在高炉下部的行为,结合高炉物料平衡和锌平衡计算,建立锌在高炉内渣铁中溶解行为计算模型.定义高炉炉腹煤气锌含量指数,表征锌在高炉内的循环富集程度.运用某钢厂的实际生产数据进行计算,得出该高炉炉腹煤气锌含量指数为568;高炉炉渣、铁水中的锌均处于饱和状态,炉渣、铁水中的锌含量分别为最终冷态下炉渣、铁水中锌含量的316倍和10倍;同时分析了锌在高炉炉底砖衬的堆积机理和锌对高炉风口的侵蚀机理,提出减缓锌对高炉破坏作用的防治措施.  相似文献   

14.
高炉冶炼含钛铁矿时,因强还原条件和高温会形成高熔点Ti(C,N),导致炉渣和铁水粘度增加,使高炉操作难以顺利进行。必须掺杂高品位铁矿稀释原料中的氧化钛,使高炉渣所含的20wt%~30 wt% TiO2难以回收,造成资源浪费。HIsmelt是近年来开发的绿色炼铁新工艺,不需要焦炭和烧结矿。HIsmelt工艺中炉内的氧分压高于高炉中的分压,温度显著低于高炉风口,因此避免了Ti(C,N)的形成。HIsmelt炉的水冷内壁会造成大量热损失,增加能耗,而且有炉衬烧穿的潜在风险。在HIsmelt工艺中以CaO为助剂熔炼富含TiO2的铁矿会产生Al2O3–MgO–SiO2–CaO–TiO2渣。利用高温平衡、冷淬和电子探针显微分析技术研究了该渣系的相平衡,探讨了处理钛磁铁矿以及钛磁铁矿和钛铁矿混合矿的过程中渣液相温度与助剂添加量的关系。在所研究的组成范围内观察到的初晶相有板钛矿M3O5(MgO·2TiO2–Al2O3·TiO2)、尖晶石(MgO·Al2O3)、钙钛矿CaTiO3和金红石TiO2。结果表明,在TiO2和M3O5相区中,渣液相温度随着CaO含量的增加而降低,而在尖晶石和CaTiO3初晶相区的液相温度则随CaO含量的增加而升高。通过控制渣液相温度可以在炉子内壁上形成保护渣层,减少热损失,降低内衬耐火材料消耗。此外,讨论了炉渣碱度对炉渣液相线温度的影响,发现冶炼钛磁铁矿和钛铁矿的混合矿可以获得低硫铁水和高TiO2炉渣,具有显著的成本和资源优势。最后,将实验测定的液相温度和固溶体成分与FactSage计算结果进行了比较,指出目前含钛热力学数据库的局限性和改进方向。  相似文献   

15.
含硼炉渣性能的研究   总被引:1,自引:1,他引:0  
本文研究了高炉型含B_2O_3合成渣的冶金性能。B_2O_3在CaO-MgO-SiO_2-Al_2O_3四元渣系中起助熔剂作用,它能降低炉渣的粘度和熔化性温度(见图1—3及表2)。含硼高镁渣具有适宜高炉冶炼的粘度和熔化性温度,例如当炉渣含MgO 25%,B_2O_3 12%且CaO/SiO_2为1.0时,其熔化性温度大约为1300℃,含硼炉渣脱硫性能良好(图 5、6)。CaO/SiO_2仍然是判别脱硫能力的主要因素。硅和硼的氧化物的还原行为相近,B_2O_3的存在促进了渣中SiO_2的还原。  相似文献   

16.
在热力学分析的基础上,研究了承钢高炉炉缸沉积物的形成机理。结果表明:承钢高炉炉缸沉积物中的高熔点物质主要为TiC及少量的Ti(N,C)、Ti(C,N)。炉渣中的TiO2与焦炭发生直接还原反应生成TiC,随着铁液的形成,渣中的TiC被铁滴吸附,包裹在铁滴周围。TiC包裹着铁液沉降到炉底形成炉缸沉积物;在渣-铁界面和铁水-炉底耐火材料界面,由于浓度梯度和温度梯度的存在析出Ti(N,C)、Ti(C,N),铁水和炉渣团聚在炉缸中形成炉缸沉积物。  相似文献   

17.
在热力学分析的基础上,研究了承钢高炉炉缸沉积物的形成机理。结果表明:承钢高炉炉缸沉积物中的高熔点物质主要为TiC及少量的Ti(N,C)、Ti(C,N)。炉渣中的TiO2与焦炭发生直接还原反应生成TiC,随着铁液的形成,渣中的TiC被铁滴吸附,包裹在铁滴周围。TiC包裹着铁液沉降到炉底形成炉缸沉积物;在渣-铁界面和铁水-炉底耐火材料界面,由于浓度梯度和温度梯度的存在析出Ti(N,C)、Ti(C,N),铁水和炉渣团聚在炉缸中形成炉缸沉积物。  相似文献   

18.
转炉炼钢脱硫试验与脱硫反应理论分析   总被引:1,自引:0,他引:1  
在90 t顶底复吹转炉上进行了12炉次炼钢过程的脱硫试验,并分别在每炉开吹后的5、10、15 min(出钢前)测量其炉温,且取钢和渣样,测量其钢、渣的组成.结果表明,随着冶炼的开展,钢中硫的含量先升高后降低,渣中硫的含量则逐渐升高;炉渣的脱硫能力随炉渣氧化性的增大而减小,随着炉温的升高逐渐增大,随着炉渣碱度的升高,则先增加后减小.生产现场工业试验结果与转炉渣-钢脱硫反应理论分析结果相一致.  相似文献   

19.
高炉渣是高炉冶炼生铁时排出的废渣。高炉渣经过加工处理后,可生产矿渣水泥,还可用于肥料、滤料、渣棉和铸石的生产。然而,高炉渣在玻璃制造中的应用还鲜为人知。  相似文献   

20.
针对竖炉冶炼铬铁新工艺炉渣为典型酸性渣的特点,应用CaO-Al2O3-SiO2、MgO-Al2O3-SiO2三元系相图、CaO-Al2O3-SiO2系在1 500℃等温截面图,比较、分析了新工艺炉渣、高炉炼钢渣以及电炉冶炼高碳铬铁渣对硅酸铝质耐材侵蚀的影响,以此在理论上初步确定新工艺炉渣对耐材的侵蚀程度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号