首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
采用准静态压缩、霍普金森动态压缩以及爆炸加载3种不同加载方式,研究了钨质量分数为97.5%的高钨合金在不同加载应变率条件下的变形以及破坏机理.试验结果表明:钨合金在应变率为10-4s-1准静态加载条件下,大量钨颗粒在与轴向呈45°方向发生拉伸塑性变形并在径向发生解理断裂;在应变率为103s-1量级的动态压缩条件下,钨合金在与加载应力呈45°方向发生了局部剪切,径向外表面发生钨-钨断裂以及钨颗粒解理断裂;爆炸加载应变率达到105~106s-1的条件下,钨合金内部产生大量钨颗粒碎块,且在个别钨颗粒内产生条状花样,同时钨颗粒内部产生大量形变孪晶作为裂纹萌生源,增加了钨合金内钨颗粒解理断裂.钨合金在高应变率加载条件下为纯脆性断裂.  相似文献   

2.
SCM435钢热变形动态再结晶动力学模型参数的确定   总被引:1,自引:0,他引:1  
通过分析冷镦钢SCM435在温度为950~1150℃、应变速率为0.1~1s-1范围内发生动态再结晶的热/力模拟试验数据,利用其应变硬化速率θ与流变应力σ的θ-σ曲线,准确确定了其发生动态再结晶的临界应变εc、峰值应变εp、临界应力σc和峰值应力σp,用应力-应变(σ-ε)曲线方法计算SCM435钢的动态再结晶Avrami动力学曲线和时间指数n.结果表明:SCM435钢发生动态再结晶的临界应变与峰值应变的平均比值εc/εp=0.73,动态再结晶Avrami时间指数平均值n=1,91;在温度950~1150℃,应变速率0.1~1 s-1范围内,应变速率是SCM435钢的动态再结晶动力学敏感因素,温度对其影响不大;动态再结晶率50%的时间t50与应变速率成反比.  相似文献   

3.
钨合金高应变率导致的塑性降低及微观机理   总被引:4,自引:0,他引:4  
对粉未冶金的93WNiFe进行了应变率为10-4~103s-1的动态拉伸实验.结果表明,具有两相组织的钨合金具有明显的高应变率导致塑性降低现象,其微观机制是随着应变率的增加,体心立方结构的钨颗粒变形逐渐被抑制,甚至不变形;面心立方结构的基体变形变化不大.断裂模式则由钨颗粒与粘接相基体界面脱开的韧性断裂向钨颗粒解理的脆性断裂转变  相似文献   

4.
细化钨合金力学性能研究与数值模拟   总被引:1,自引:0,他引:1  
针对晶粒度分别为1~3μm,10~15μm,30~40μm的细化钨合金材料,采用单轴拉伸实验研究了3种材料在准静态条件下的力学性能,获得了3种材料在不同加载速率下的应力-应变曲线和静力学基本参数. 在实验的基础上,运用有限元计算软件ANSYS,建立了能够反映钨合金材料微观结构特征的计算模型,模拟了不同体积分数、不同颗粒形状、不同晶粒度钨合金材料在静态拉伸载荷作用下的力学性能,给出了钨合金材料的应力-应变曲线,分析了钨合金力学性能与钨合金各微观参量之间的关系.  相似文献   

5.
运用Gleeble-1500D热模拟试验机对铸态Al-Zn-Mg-Cu高强铝合金进行高温拉伸实验,利用光学显微镜(OM)观察断口附近的微观组织,用扫描电子显微镜(SEM)观察断口形貌。结果表明,变形温度在340℃~420℃,应变速率为0.01 s-1时,随着温度升高,峰值应力、峰值应变、断裂应变、断面收缩率、延伸率均下降;变形温度为360℃,应变速率为0.1 s-1~1 s-1时,随着应变速率的增大,峰值应力、峰值应变均增大,断裂应变减小,断面收缩率和延伸率有下降的趋势。该合金高温拉伸过程中的软化机制主要为动态回复。高温拉伸的断口形貌为韧性断裂。断口表面的粗大脆硬相对材料的性能有严重影响。  相似文献   

6.
利用Gleeble-1500热模拟试验机对Mn-Nb-Cu-B低碳贝氏体钢进行单道次压缩实验,研究其在温度为1 000~1 150℃和应变速率为0.01~0.1 s-1条件下的动态再结晶行为.通过加工硬化率和应变的关系曲线确定该贝氏体钢发生动态再结晶的临界条件,并建立动态再结晶临界应变模型和峰值应变模型.根据应力-应变曲线数据确定不同变形条件下该贝氏体钢的动态再结晶的体积分数,并利用该体积分数建立动态再结晶动力学模型.研究结果表明:Mn-Nb-Cu-B低碳贝氏体钢高温变形存在动态再结晶现象,且随着变形温度的升高,应变速率的降低,动态再结晶临界应变量减小,更容易发生动态再结晶.采用回归法确定该贝氏体钢的动态再结晶激活能为328 kJ/mol,并获得该贝氏体钢的热加工方程.该低碳贝氏体钢发生动态再结晶的临界应变与峰值应变的平均比值εc/εp为0.63.  相似文献   

7.
钨合金力学性能及断口形貌的温度效应   总被引:8,自引:0,他引:8  
研究了真空退火态93WNiFe合金在10-900℃的拉伸性能、断口形貌及显微组织,研究结果表明:随着温度的升高钨合金抗拉强度逐渐下降,延伸率先上升后下降,在400℃出现峰值,断口形貌由钨颗粒解理型断裂逐渐向钨颗粒与粘结相脱开型断裂转变,钨合金抗拉强度主要受断口断裂模式的影响,而延伸率却受钨颗粒和粘结相变形的共同影响。  相似文献   

8.
利用自制高速冲击加载试验装置(应变率ε104s-1)研究SiC骨架/Zr基非晶合金复合材料的室温断裂行为.利用配有能谱(EDX)的扫描电子显微镜(SEM)对冲击前后的SiC骨架/Zr基非晶合金复合材料作微观形貌分析,对比研究了其高速冲击载荷下(ε104s-1)与ε为102~103 s-1时断裂行为的差异.结果表明:高速冲击载荷下,三维连通网状SiC骨架/Zr基非晶复合材料中非晶相典型断口形貌为类蜂窝状花样,伴有微孔洞和微裂纹产生,各种花样尺寸均比ε为102~103 s-1时小,白亮边低矮,断口形貌随非晶相尺寸变化发生改变,SiC相以解理断裂为主,部分区域出现SiC碎化.  相似文献   

9.
为改善5083铝合金的力学性能,先后对其进行一道次等通道转角挤压处理及再结晶退火处理,再进行拉伸实验,分析变形温度、变形速率对合金伸长率和抗拉强度的影响,并观察合金的断口形貌.结果表明,在拉伸温度为100℃,应变速率为6.67×10-4 s-1时,合金的抗拉强度最高,达到319.7 MPa;当拉伸温度为300℃,应变速率为1.67×10-4 s-1时,合金的伸长率最大,达到75.8%.在拉伸变形过程中,合金出现应变硬化和应变软化现象,并且伴随有锯齿形流变现象.拉伸试样的断裂形式宏观表现为韧性断裂,微观形式为穿晶断裂,断口形貌由韧窝组成.随着变形温度的升高,韧窝的数量增多,尺寸变大,分布变均匀.  相似文献   

10.
采用MTS810材料疲劳实验系统,开展了不同粒径91钨合金材料的准静态单轴拉伸实验研究,获得了材料的应力应变曲线和静态力学性能参数。在此基础上,建立了能够反映钨合金材料宏微观特征的计算模型,数值计算了不同颗粒形状、不同钨含量合金材料在准静态拉伸载荷作用下的力学性能。得到了其整体的应力应变曲线以及钨合金屈服强度与钨合金微观参量之间的关系。并分析了钨合金材料的内部应力和应变场。结果表明:计算结果和实验结果吻合较好,随着钨含量的增加,钨合金的屈服强度增加,但其延伸率均降低;随着长径比的增加,钨合金的屈服强度有所增加,且随着长径比的增加,屈服强度的增加变得缓慢。为进一步钨合金材料性能的研究提供了重要的指导作用。  相似文献   

11.
稀土元素La,Ce对93WNiFe合金力学性能的影响   总被引:1,自引:0,他引:1  
通过粉末冶金方法制备了添加稀土元素La,Ce的93W-4.9Ni-2.1Fe合金,研究了稀土元素对高密度93钨合金静、动态力学性能的影响. 结果表明,添加少量的稀土元素La,Ce可以显著提高93钨合金的力学性能. La,Ce的加入使合金断口上钨-钨界面分离和钨-粘结相界面开裂的比例减少,钨颗粒解理断裂和基体相韧性撕裂的比例增加. 稀土元素La,Ce改变了氧和硫在合金中的存在与分布状态,减小了其在钨-粘结相界面的偏聚,从而改善了合金的力学性能.  相似文献   

12.
研究了利用普通熔铸设备,原位合成法制备的TiB和TiC颗粒增强钛基复合材料的高温变形行为.在915~1100℃,初始应变速率ε=101^-2~10^-4s^-1,进行了超塑拉伸实验.结果表明,在1015℃、ε=10^-2s^-1时,延伸率最大,为235%,相应的应变速率敏感性因子为0.22,最大的m值并不对应最大的延伸率.计算得到各温度下的超塑变形表观激活能为144~311kJ/mol,激活能的差异表明,该复合材料的高温变形在不同温度下受不同机制控制.同时,利用扫描电镜观察了断口形貌,分析了其变形机理.  相似文献   

13.
应变速率对8090Al-Li合金拉伸性能的影响   总被引:1,自引:0,他引:1  
用动态拉伸的方法研究了应变速率对 80 90 Al— L i合金拉伸性能的影响 ,应变速率的范围为 10 - 3~ 10 3s- 1。结果表明 ,合金的强度和塑性随应变率的增加而增加。试样的 SEM和 TEM分析发现 :准静态下的断裂为沿晶断裂 ;随着应变率的增加 ,断裂从穿晶准解理断裂过渡到由显微空穴聚集而成的韧窝断裂。高应变率下80 90 Al- L i合金强度和塑性的提高与其变形机制和晶界无沉淀区 (PFZ)的变化有关  相似文献   

14.
碳纤维高应变率拉伸破坏形态的应变率效应性质   总被引:2,自引:0,他引:2  
利用反射式间接拉伸Hopkinson杆实验装置,测试碳纤维在应变率1500-3000s^-1范围内的拉伸性质。实验结果表明,碳纤维在拉伸性质上是应变率不敏感材料,这与目前已有实验资料一致,但对碳纤维断裂端的断口形状观测表明,碳纤维破坏形态是与应变率相关的,随着应变率的增加,断口形态逐渐光滑。破坏形态的差异也导致了拉伸力学性质在不同应变率下的微弱差异。  相似文献   

15.
采用拉伸试验研究了温轧态 Fe3Al- Ti合金 Fe- 2 8Al- 2 Ti的低温变形行为 .发现当应变速率为 1.2 5× 10 - 4 s- 1和 2 .5× 10 - 4 s- 1时 ,该合金在 6 0 0~ 70 0℃具有超塑性 .70 0℃时断裂延伸率可达 389%,根据试验数据计算出应变速率敏感指数一般低于 0 .3.金相组织观察表明 ,变形过程中发生了动态回复和动态再结晶 ,从而导致了温轧态 Fe3Al- Ti合金的超塑性 .  相似文献   

16.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,在变形温度650~850℃、应变速率0.001~10 s-1和总压缩应变量50%的条件下,对Cu-Cr-Zr合金的流变应力行为进行研究.通过应力-应变曲线和显微组织图分析了合金在不同应变速率、不同应变温度下的变化规律.结果表明:应变速率和变形温度对合金再结晶影响较大,变形温度越高,合金越容易发生动态再结晶;应变速率越小,合金也同样容易发生动态再结晶,并且对应的峰值应力也越小.从流变应力、应变速率和温度的相关性,得出了该合金热压缩变形时的热变形激活能Q和流变应力方程.研究分析Cu-Cr-Zr合金的热加工性能,可为生产实践提供理论指导与借鉴.  相似文献   

17.
高硅铝合金以其优异的性能在电子封装领域具有广阔的应用前景,准确地测量其高温微观力学行为具有重要意义.本文基于数字图像相关(DIC)方法,对Al-27%Si、Al-42%Si、Al-60%Si3种不同硅含量高硅铝合金的拉伸试样开展了扫描电子显微镜(SEM)下的高温原位拉伸实验研究.分析了在20~300℃下测得的3种合金的应力-应变曲线、微尺度全场应变分布规律以及拉伸试样的断口形貌.结果表明,硅的含量和温度对高硅铝合金拉伸力学行为具有显著的影响.随着温度的升高,3种合金的应变量均逐渐增大,其中Al-27%Si的应变量变化最大.3种合金的抗拉强度随温度的升高均近似呈线性趋势降低,常温下Al-27%Si最高,200℃以上时Al-42%Si最高,Al-60%Si合金的抗拉强度最低.在Al-27%Si与Al-42%Si合金的应变场中的铝基体相内部出现了明显的应变集中现象,而Al-60%Si的应变分布较均匀.温度对3种合金的微尺度拉伸变形场分布规律影响不大.合金的拉伸断口形貌表明,随着硅含量的增加,高硅铝合金主要的拉伸断裂机制由铝相的韧性断裂逐渐转变为硅相的脆性断裂,而温度对其影响较小.3种高硅铝合金在不同温度下拉伸时均无明显的屈服现象,也未出现颈缩现象.  相似文献   

18.
研究90WNiFe(90钨合金)在25~900 ℃的力学性能及断口形貌,得到了温度对90钨合金微观组织和力学性能的影响规律.研究结果表明,随着温度的升高钨合金抗拉强度逐渐下降,断口形貌由钨颗粒解理断裂和粘结相的韧性撕裂为主逐渐向钨颗粒与粘结相界面分离为主转变,钨合金的抗拉强度主要受断口断裂模式的影响;延伸率随温度的升高出现先上升后下降的变化规律,在350 ℃出现峰值,延伸率的变化是合金断口断裂模式的变化和粘结相与钨颗粒塑性变形共同作用的结果.  相似文献   

19.
20CrMnTi结构钢热变形行为及其数学模型   总被引:15,自引:1,他引:15  
利用Gleeble-1500热模拟实验机研究了20CrMnTi结构钢在温度为1223~1243K,变形速率为0.01~5s^-1条件下的热变形行为.通过奥氏体再结晶动力学回归计算了20CrMnTi的形变激活能,以及峰值应力与变形温度、应变速率之间的关系;提出采用加工硬化率-应变(θ-ε)图可以准确地判断该钢发生动态软化的类型,并可以确定动态再结晶开始和结束以及最大软化率时所对应的应变.给出了反映该钢动态再结晶进行过程的动态再结晶状态图,以及动态再结晶开始时间和完全再结晶时间与形变温度的关系图,并回归出了20CrMnTi钢的再结晶动力学方程.  相似文献   

20.
采用Gleeble-1500热模拟试验机,对GH625合金进行了以不同变形温度、不同应变速率变形到真应变值为0.7的热压缩试验,以研究其热变形过程的动态再结晶组织演变.利用光学显微镜(OP)和透射电镜(TEM)分析了应变速率对GH625合金热变形过程中的组织演变及动态再结晶形核机制的影响.结果表明:应变速率·ε=10.0s-1时,实际变形温度高于预设温度,产生变形热效应.GH625合金热变形过程的组织演变是一个受应变速率和变形温度控制的过程,在应变速率·ε≤1.0s-1时,GH625合金动态再结晶晶粒的尺寸及体积分数随着应变速率的升高而降低,动态再结晶形核机制是由晶界弓弯的不连续动态再结晶机制和亚晶旋转的连续动态再结晶机制组成;在应变速率·ε=10.0s-1时,由于变形热效应使动态再结晶晶粒的尺寸及体积分数迅速升高,动态再结晶机制则是以弓弯机形核的不连续动态再结晶机制为主.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号