首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
2.
Friml J  Wiśniewska J  Benková E  Mendgen K  Palme K 《Nature》2002,415(6873):806-809
Long-standing models propose that plant growth responses to light or gravity are mediated by asymmetric distribution of the phytohormone auxin. Physiological studies implicated a specific transport system that relocates auxin laterally, thereby effecting differential growth; however, neither the molecular components of this system nor the cellular mechanism of auxin redistribution on light or gravity perception have been identified. Here, we show that auxin accumulates asymmetrically during differential growth in an efflux-dependent manner. Mutations in the Arabidopsis gene PIN3, a regulator of auxin efflux, alter differential growth. PIN3 is expressed in gravity-sensing tissues, with PIN3 protein accumulating predominantly at the lateral cell surface. PIN3 localizes to the plasma membrane and to vesicles that cycle in an actin-dependent manner. In the root columella, PIN3 is positioned symmetrically at the plasma membrane but rapidly relocalizes laterally on gravity stimulation. Our data indicate that PIN3 is a component of the lateral auxin transport system regulating tropic growth. In addition, actin-dependent relocalization of PIN3 in response to gravity provides a mechanism for redirecting auxin flux to trigger asymmetric growth.  相似文献   

3.
AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis   总被引:2,自引:0,他引:2  
Jaillais Y  Fobis-Loisy I  Miège C  Rollin C  Gaude T 《Nature》2006,443(7107):106-109
Polarized cellular distribution of the phytohormone auxin and its carriers is essential for normal plant growth and development. Polar auxin transport is maintained by a network of auxin influx (AUX) and efflux (PIN) carriers. Both auxin transport and PIN protein cycling between the plasma membrane and endosomes require the activity of the endosomal GNOM; however, intracellular routes taken by these carriers remain largely unknown. Here we show that Arabidopsis thaliana SORTING NEXIN 1 (AtSNX1) is involved in the auxin pathway and that PIN2, but not PIN1 or AUX1, is transported through AtSNX1-containing endosomes. We demonstrate that the snx1-null mutant exhibits multiple auxin-related defects and that loss of function of AtSNX1 severely enhances the phenotype of a weak gnom mutant. In root cells, we further show that AtSNX1 localizes to an endosomal compartment distinct from GNOM-containing endosomes, and that PIN2 accumulates in this compartment after treatment with the phosphatidylinositol-3-OH kinase inhibitor wortmannin or after a gravity stimulus. Our data reveal the existence of a novel endosomal compartment involved in PIN2 endocytic sorting and plant development.  相似文献   

4.
拟南芥PIN2介导的生长素极性运输调控植物根向地性   总被引:2,自引:0,他引:2  
主要观察了拟南芥生长素输出载体PIN2及其介导的极性运输、生长素诱导合成对根尖生长素不对称分布和根向地性反应的影响.结果表明:拟南芥PIN2基因突变、诱导内源生长素IAA及用抑制剂NPA或TIBA抑制生长素极性运输都严重影响了根尖生长素不对称分布的形成,最终抑制植物根向地性反应,暗示PIN2介导的生长素极性运输和生长素不对称分布在根向地性反应中起着关键性调控作用.从这些研究结果可进一步理解生长素调控植物根向地性的分子机理.  相似文献   

5.
Auxin transport inhibitors block PIN1 cycling and vesicle trafficking   总被引:79,自引:0,他引:79  
Geldner N  Friml J  Stierhof YD  Jürgens G  Palme K 《Nature》2001,413(6854):425-428
Polar transport of the phytohormone auxin mediates various processes in plant growth and development, such as apical dominance, tropisms, vascular patterning and axis formation. This view is based largely on the effects of polar auxin transport inhibitors. These compounds disrupt auxin efflux from the cell but their mode of action is unknown. It is thought that polar auxin flux is caused by the asymmetric distribution of efflux carriers acting at the plasma membrane. The polar localization of efflux carrier candidate PIN1 supports this model. Here we show that the seemingly static localization of PIN1 results from rapid actin-dependent cycling between the plasma membrane and endosomal compartments. Auxin transport inhibitors block PIN1 cycling and inhibit trafficking of membrane proteins that are unrelated to auxin transport. Our data suggest that PIN1 cycling is of central importance for auxin transport and that auxin transport inhibitors affect efflux by generally interfering with membrane-trafficking processes. In support of our conclusion, the vesicle-trafficking inhibitor brefeldin A mimics physiological effects of auxin transport inhibitors.  相似文献   

6.
主要观察了外源生长素长时间(8 h)处理对拟南芥生长素极性输出载体PIN2-GFP质膜丰度的影响,低温、KCN处理和生长素受体突变对生长素调控质膜PIN2-GFP丰度的影响,以及液泡H+-ATPase抑制剂ConA对野生型和生长素受体四突变体tir1afb1,2,3液泡中PIN2-GFP积累的影响.结果表明:外源生长素通过其受体TIR1/AFB介导的信号途径下调质膜PIN2-GFP的丰度,促进PIN2-GFP的内吞、胞内运输和液泡降解.暗示生长素通过TIR1/AFB介导的信号途径反馈调控质膜PIN2-GFP的水平,从而阻止了胞内生长素的过多输出.  相似文献   

7.
Noh B  Bandyopadhyay A  Peer WA  Spalding EP  Murphy AS 《Nature》2003,423(6943):999-1002
Many aspects of plant growth and development are dependent on the flow of the hormone auxin down the plant from the growing shoot tip where it is synthesized. The direction of auxin transport in stems is believed to result from the basal localization within cells of the PIN1 membrane protein, which controls the efflux of the auxin anion. Mutations in two genes homologous to those encoding the P-glycoprotein ABC transporters that are especially abundant in multidrug-resistant tumour cells in animals were recently shown to block polar auxin transport in the hypocotyls of Arabidopsis seedlings. Here we show that the mdr mutants display faster and greater gravitropism and enhanced phototropism instead of the impaired curvature development expected in mutants lacking polar auxin transport. We find that these phenotypes result from a disruption of the normal accumulation of PIN1 protein along the basal end of hypocotyl cells associated with basipetal auxin flow. Lateral auxin conductance becomes relatively larger as a result, enhancing the growth differentials responsible for tropic responses.  相似文献   

8.
9.
Auxin inhibits endocytosis and promotes its own efflux from cells   总被引:2,自引:0,他引:2  
One of the mechanisms by which signalling molecules regulate cellular behaviour is modulating subcellular protein translocation. This mode of regulation is often based on specialized vesicle trafficking, termed constitutive cycling, which consists of repeated internalization and recycling of proteins to and from the plasma membrane. No such mechanism of hormone action has been shown in plants although several proteins, including the PIN auxin efflux facilitators, exhibit constitutive cycling. Here we show that a major regulator of plant development, auxin, inhibits endocytosis. This effect is specific to biologically active auxins and requires activity of the Calossin-like protein BIG. By inhibiting the internalization step of PIN constitutive cycling, auxin increases levels of PINs at the plasma membrane. Concomitantly, auxin promotes its own efflux from cells by a vesicle-trafficking-dependent mechanism. Furthermore, asymmetric auxin translocation during gravitropism is correlated with decreased PIN internalization. Our data imply a previously undescribed mode of plant hormone action: by modulating PIN protein trafficking, auxin regulates PIN abundance and activity at the cell surface, providing a mechanism for the feedback regulation of auxin transport.  相似文献   

10.
本论文通过添加外源过氧化氢来探究其对植物生长素信号的影响。以GUS基因作为报告基因,研究拟南芥中各生长素相关蛋白(生长素含量标志蛋白DR5、输入蛋白AUX1、输出蛋白PIN1和PIN2)对过氧化氢的响应。结果表明过氧化氢处理后拟南芥呈植株变小、根变短和不定根数目增多的表型;与对照相比,GUS染色后各生长素相关蛋白的表达下降,这表明过氧化氢对植物生长素的合成与运输起一定的抑制作用。在过氧化氢处理的基础上,添加抗氧化物质发现植株表型有明显的恢复,GUS染色也表明相关蛋白的表达量均增加;另外,0.0001 ?mol/L的外源IAA也能恢复过氧化氢处理后拟南芥的表型和生长素相关蛋白的表达。综上所述,过氧化氢主要通过抑制植物体内的生长素信号来调控植物的生长发育。  相似文献   

11.
脱落酸对水稻根系生长素合成与运输的调控   总被引:1,自引:0,他引:1  
利用一系列不同浓度的脱落酸(ABA)处理水稻幼苗根系,观察水稻初生根根长、冠根数目、侧根数目及长度、DR5::GUS转基因材料GUS活性、生长素的合成及运输相关基因表达水平等变化.结果表明,ABA可以抑制水稻初生根的伸长、冠根和侧根的发生和伸长,并且抑制效应呈现剂量效应.DR5::GUS活性在整个根系中随ABA处理浓度升高而减弱,但根尖部位的DR5::GUS活性经过ABA处理后表现增强;生长素合成相关基因YUCCA2、YUCCA4、YUCCA7,生长素运输载体基因AUX3、AUX5、PiN1b、PiN2、PiN5a、PiN9、PiN10a均显著下降表达.  相似文献   

12.
Dynamically polarized membrane proteins define different cell boundaries and have an important role in intercellular communication-a vital feature of multicellular development. Efflux carriers for the signalling molecule auxin from the PIN family are landmarks of cell polarity in plants and have a crucial involvement in auxin distribution-dependent development including embryo patterning, organogenesis and tropisms. Polar PIN localization determines the direction of intercellular auxin flow, yet the mechanisms generating PIN polarity remain unclear. Here we identify an endocytosis-dependent mechanism of PIN polarity generation and analyse its developmental implications. Real-time PIN tracking showed that after synthesis, PINs are initially delivered to the plasma membrane in a non-polar manner and their polarity is established by subsequent endocytic recycling. Interference with PIN endocytosis either by auxin or by manipulation of the Arabidopsis Rab5 GTPase pathway prevents PIN polarization. Failure of PIN polarization transiently alters asymmetric auxin distribution during embryogenesis and increases the local auxin response in apical embryo regions. This results in ectopic expression of auxin pathway-associated root-forming master regulators in embryonic leaves and promotes homeotic transformation of leaves to roots. Our results indicate a two-step mechanism for the generation of PIN polar localization and the essential role of endocytosis in this process. It also highlights the link between endocytosis-dependent polarity of individual cells and auxin distribution-dependent cell fate establishment for multicellular patterning.  相似文献   

13.
Teh OK  Moore I 《Nature》2007,448(7152):493-496
Circumstantial evidence suggests that intracellular membrane trafficking pathways diversified independently in the plant kingdom, but documented examples are rare. ARF-GEFs (guanine-nucleotide exchange factors for ADP-ribosylation factor GTPases) are essential for vesicular trafficking in all eukaryotic kingdoms, but of the eight ARF-GEF families, only the ancestral BIG and GBF types are found in plants. Whereas fungal and animal GBF proteins perform conserved functions at the Golgi, the Arabidopsis thaliana GBF protein GNOM is thought to act in only the process of recycling from endosomes. We now show that the related Arabidopsis GBF protein GNOM-LIKE1 (GNL1) has an ancestral function at the Golgi but is also required for selective internalization from the plasma membrane in the presence of brefeldin A (BFA). We identified gnl1 mutants that accumulated biosynthetic and recycling endoplasmic reticulum markers in enlarged internal compartments. Notably, in the absence of functional GNL1, Golgi stacks were rendered sensitive to the selective ARF-GEF inhibitor BFA, which caused them to fuse with the endoplasmic reticulum. Furthermore, in BFA-treated gnl1 roots, the internalization of a polar plasma-membrane marker, the auxin efflux carrier PIN2, was selectively inhibited. Thus, GNL1 is a BFA-resistant GBF protein that functions with a BFA-sensitive ARF-GEF both at the Golgi and in selective endocytosis, but not in recycling from endosomes. We propose that the evolution of endocytic trafficking in plants was accompanied by neofunctionalization within the GBF family, whereas in other kingdoms it occurred independently by elaboration of additional ARF-GEF families.  相似文献   

14.
T Tuomikoski  M A Felix  M Dorée  J Gruenberg 《Nature》1989,342(6252):942-945
Membrane transport between the endoplasmic reticulum and the plasma membrane, which involves the budding and fusion of carrier vesicles, is inhibited during mitosis in animal cells. At the same time, the Golgi complex and the nuclear envelope, as well as the endoplasmic reticulum in some cell types, become fragmented. Fragmentation of the Golgi is believed to facilitate its equal partitioning between daughter cells. In fact, it has been postulated that both the inhibition of membrane traffic and Golgi fragmentation during mitosis are due to an inhibition of vesicle fusion, while vesicle budding continues. Although less is known about the endocytic pathway, internalization and receptor recycling are also arrested during mitosis. We have now used a cell-free assay to show that the fusion of endocytic vesicles from baby hamster kidney cells is reduced in Xenopus mitotic cytosol when compared with interphase cytosol. We reconstituted this inhibition in interphase cytosol by adding a preparation enriched in the starfish homologue of the cdc2 protein kinase. Inhibition was greater than or equal to 90% when the added cdc2 activity was in the range estimated for that in mitotic Xenopus eggs, which indicates that during mitosis the cdc2 kinase mediates an inhibition of endocytic vesicle fusion, and possibly other fusion events in membrane traffic.  相似文献   

15.
Guanine-nucleotide exchange factors on ADP-ribosylation factor GTPases (ARF-GEFs) regulate vesicle formation in time and space by activating ARF substrates on distinct donor membranes. Mammalian GBF1 (ref. 2) and yeast Gea1/2 (ref. 3) ARF-GEFs act at Golgi membranes, regulating COPI-coated vesicle formation. In contrast, their Arabidopsis thaliana homologue GNOM (GN) is required for endosomal recycling, playing an important part in development. This difference indicates an evolutionary divergence of trafficking pathways between animals and plants, and raised the question of how endoplasmic reticulum-Golgi transport is regulated in plants. Here we demonstrate that the closest homologue of GNOM in Arabidopsis, GNOM-LIKE1 (GNL1; NM_123312; At5g39500), performs this ancestral function. GNL1 localizes to and acts primarily at Golgi stacks, regulating COPI-coated vesicle formation. Surprisingly, GNOM can functionally substitute for GNL1, but not vice versa. Our results suggest that large ARF-GEFs of the GBF1 class perform a conserved role in endoplasmic reticulum-Golgi trafficking and secretion, which is done by GNL1 and GNOM in Arabidopsis, whereas GNOM has evolved to perform an additional plant-specific function of recycling from endosomes to the plasma membrane. Duplication and diversification of ARF-GEFs in plants contrasts with the evolution of entirely new classes of ARF-GEFs for endosomal trafficking in animals, which illustrates the independent evolution of complex endosomal pathways in the two kingdoms.  相似文献   

16.
Transport, capture and exocytosis of single synaptic vesicles at active zones   总被引:22,自引:0,他引:22  
Zenisek D  Steyer JA  Almers W 《Nature》2000,406(6798):849-854
To sustain high rates of transmitter release, synaptic terminals must rapidly re-supply vesicles to release sites and prime them for exocytosis. Here we describe imaging of single synaptic vesicles near the plasma membrane of live ribbon synaptic terminals. Vesicles were captured at small, discrete active zones near the terminal surface. An electric stimulus caused them to undergo rapid exocytosis, seen as the release of a fluorescent lipid from the vesicles into the plasma membrane. Next, vesicles held in reserve about 20 nm from the plasma membrane advanced to exocytic sites, and became release-ready 250 ms later. Apparently a specific structure holds vesicles at an active zone to bring v-SNAREs and t-SNAREs, the proteins that mediate vesicle fusion, within striking distance of each other, and then allows the triggered movement of such vesicles to the plasma membrane.  相似文献   

17.
根系发育是植物生长的重要组成部分,该过程由多种信号转导途径共同调节。组蛋白乙酰化和去乙酰化的动态变化对基因表达具有关键的调控作用,而对其在根发育中功能的研究还不深入。本研究通过组蛋白去乙酰化酶抑制剂Trichostatin A(TSA)处理拟南芥,发现其主根生长受到抑制,分生区细胞数目变少。显微观察的结果表明TSA影响了根尖干细胞微环境。根尖微环境调控相关因子SCR和SHR的表达受TSA处理的影响并不明显,而PLT1/PLT2的表达受TSA强烈抑制。我们对生长素运输途径的分析发现在TSA处理条件下,PIN1表达只受轻微影响,而PIN2表达量明显下调。pDR5:GFP的结果表明TSA可能引起生长素在根尖的积累和分布变化。综上所述,TSA影响了拟南芥根尖干细胞微环境的维持,表明组蛋白的去乙酰化在根发育过程中发挥着重要作用。  相似文献   

18.
Axis formation occurs in plants, as in animals, during early embryogenesis. However, the underlying mechanism is not known. Here we show that the first manifestation of the apical-basal axis in plants, the asymmetric division of the zygote, produces a basal cell that transports and an apical cell that responds to the signalling molecule auxin. This apical-basal auxin activity gradient triggers the specification of apical embryo structures and is actively maintained by a novel component of auxin efflux, PIN7, which is located apically in the basal cell. Later, the developmentally regulated reversal of PIN7 and onset of PIN1 polar localization reorganize the auxin gradient for specification of the basal root pole. An analysis of pin quadruple mutants identifies PIN-dependent transport as an essential part of the mechanism for embryo axis formation. Our results indicate how the establishment of cell polarity, polar auxin efflux and local auxin response result in apical-basal axis formation of the embryo, and thus determine the axiality of the adult plant.  相似文献   

19.
拟南芥花蜜腺的高尔基体活动及其分泌途径   总被引:1,自引:0,他引:1  
应用高压冷冻和冷冻置换电镜技术对拟南芥Arabidopsis thaliana L.花蜜腺发育过程中蜜腺细胞内高尔基体的活动进行了观察,并且对高尔基体分泌泡的分泌途径进行了探讨。结果认为:蜜腺发育初期、泌蜜盛期和蜜腺发育后期,高尔基体的活动较为频繁。蜜腺细胞中,高尔基体分泌泡向细胞外输送物质时并未遵循“胞吐作用”途径,而是分泌泡整体进入到细胞壁内,最后在细胞壁内解体并释放内容物。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号