首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于滑脱流动和努森扩散,分别以分子之间碰撞频率和分子与壁面碰撞频率占总碰撞频率的比值作为滑脱流动和努森扩散的权重系数,进行权重叠加,建立了页岩气复杂孔裂隙气体传输模型.该模型综合考虑了滑脱效应和真实气体效应,同时还分别考虑了截面类型(圆形和矩形)和形状对气体传输的影响.用公开发表的分子模拟数据验证模型.结果表明:(1)本文模型能够合理地描述页岩气复杂孔裂隙气体传输机理,包括连续流动、滑脱流动和过渡流动;(2)页岩气孔裂隙截面类型和形状影响气体传输能力,相同截面面积,圆形截面孔裂隙气体传输能力大于矩形截面孔裂隙气体传输能力,矩形截面孔裂隙气体传输能力随纵横比增大而减小;与截面类型相比,截面形状对气体传输能力的影响更大;(3)真实气体效应提高了气体传输能力,且这种影响随压力增大而增大,随孔裂隙尺度减小而增大;(4)与圆形截面相比,真实气体效应对矩形截面气体传导率影响更大,且随矩形截面纵横比增大而增大.本文模型能为页岩气准确数值模拟奠定一些理论基础.  相似文献   

2.
页岩富含纳米孔,且吸附气占总气量可高达85%,因此页岩气表面扩散对气体传输具有重要的作用.页岩气藏压力高,页岩表面能量非均质性强,吸附气非等温解吸附等,均加剧了吸附气表面扩散模拟的复杂性.基于低压条件下推导的Hwang模型,考虑高压条件下吸附气覆盖度的影响,建立了页岩吸附气表面扩散模型.同时,该模型还考虑了页岩表面能量非均质性、等量吸附热和非等温解吸附对表面扩散的影响.研究表明:1)表面扩散系数随压力的增大而增大,随温度的升高而增大,随表面活化能的减小而增大,随气体分子量的减小而增大;2)黏性流动、努森扩散和表面扩散对气体传输的贡献是此消彼长的,主要受孔隙尺度和压力的控制;3)表面扩散在微孔(半径2 nm)中,对气体传输贡献大,可高达92.95%;在宏孔(半径50 nm)中,贡献低于4.39%,可忽略;在介孔(2半径50 nm)中,表面扩散的贡献介于微孔和宏孔之间.  相似文献   

3.
页岩具有很强的压力敏感性,围压和孔压的变化会改变页岩孔隙的大小,从而对页岩气的流动规律产生影响,利用数字岩心结合格子Boltzmann方法(lattice Boltzmann method,LBM)来研究页岩气微观渗流规律得到越来越多学者的重视.本文建立了应力条件下的数字岩心应力应变模型和页岩气渗流LBM模型,研究了应力对页岩气渗流的影响规律.研究结果表明:有机质中的纳米孔隙对应力更加敏感,随应力变化的程度相比矿物骨架孔隙更大,从而影响页岩气在纳米孔隙中的解吸和扩散;孔压对各渗流机理的影响要比围压的影响大,是因为孔压的变化不仅影响了孔隙的尺寸还影响了气体的平均分子自由程;当平均孔压从17 MPa降低到5 MPa时,解吸的气体量和通过扩散流动的气体量占总气体流量的比例不断增加,分别增加了2%和1.9%,而通过滑脱流动的气体量占总气体流量的比例不断减少,减少了3.8%.利用应力条件下的数字岩心和格子Boltzmann方法可以更精确地模拟页岩气在储层中的流动规律,更好地理解页岩气的产出机理.  相似文献   

4.
页岩气储层孔隙结构复杂,纳米孔隙所占比例大,而纳米孔内部气体流动机理不同于宏观流体流动,因此认识页岩气在纳米孔隙中的流动机理对页岩气的高效开采具有重要的科学意义.页岩气开采过程中,纳米孔的吸附解吸、应力敏感效应及滑脱效应使渗透率发生显著变化.为此,基于毛细管模型耦合考虑吸附变形修正应力应变的渗透率模型,在此基础上,考虑滑脱效应影响,建立页岩表观渗透率模型来描述气体流动.通过试验数据验证其合理性,并对模型相关参数对表观渗透率的影响进行讨论.研究结果表明,新建页岩表观渗透率模型能够合理地描述页岩气真实储层条件下气体的流动,考虑了吸附变形、应力敏感及应力变化下纳米孔气体滑脱效应等微观机理.在围压恒定条件下,新建模型计算出的曲线均与实测值吻合较好;随孔隙压力升高,页岩表观渗透率呈指数函数降低.两种气体的表观渗透率随平均分子自由程的增大而增大;孔径越大,在压力区间内渗透率越高,且随孔隙压力升高,渗透率逐渐降低.页岩表观渗透率对弹性模量较为敏感,弹性模量增大会导致在其压力阶段内有较高的渗透率;在孔隙压力升高过程中,裂隙压缩系数越小,渗透率越高;随温度的升高,页岩表观渗透率呈上升趋势.所建模型能为页岩气生产动态分析、产能预测和生产制度制订提供指导.  相似文献   

5.
页岩气储层纳微米孔隙、裂缝结构复杂,存在多尺度流动,气体的流动规律不同于常规气藏.本文对多孔介质内气体流动进行了研究,利用努森数划分不同尺度下气体流态,阐明了不同区域的流动机理和流动特征;综合考虑达西渗流、滑移扩散效应、井筒附近高速非达西效应等多重非线性效应,建立了页岩气储层多尺度统一流动模型.引入页岩气储层基质-压裂缝耦合两区模型,建立了页岩气储层压裂井定压条件下的两区压力分布和产能预测方程,并结合生产实例进行了参数敏感性分析.结果表明:随着滑移扩散系数、分形系数、压裂半径的增大,页岩气井产能增加,且增加幅度减小;考虑高速非达西效应较不考虑高速非达西效应时,页岩储层产能偏低,且高速非达西效应的影响小于滑移扩散对产能的影响.该模型为体积压裂页岩气产能预测及开发指标优化提供了理论依据.  相似文献   

6.
页岩储层微纳米孔隙、天然裂缝发育,不同类型孔隙中气体赋存状态和传输机理各异.本文在对天然裂缝定量表征的基础上,兼顾页岩气渗流特征和实际工程应用需要,综合考虑页岩岩芯孔-缝发育特征,基于渗透率串-并联模型建立耦合基质微纳米孔隙气体滑脱效应、扩散效应和天然裂缝渗流特征的页岩气表观渗透率模型,利用四川盆地牛蹄塘组天然裂缝发育的页岩岩样对理论模型进行验证.研究结果表明,该渗透率模型即能高度拟合天然页岩岩芯渗透率实验测量结果,又准确描述了岩芯内部基质孔隙和天然裂缝共同渗流的特点,更加符合实际渗流情况.总之,本文建立的页岩天然裂缝定量表征方法和综合考虑微纳米孔隙、天然裂缝渗流特征的表观渗透率模型不仅为页岩气藏复杂裂缝网络建模提供了一种新的手段,而且进一步推动了复杂缝网页岩气藏数值模拟研究工程应用的实现.  相似文献   

7.
常规油气井可较容易求得解析产能,而页岩气的解吸、滑脱和扩散等非线性流动机理导致产能模型具有严重的非线性.本文运用三线性流模型,引入新的拟压力和拟时间处理页岩气的解吸和压缩性的非线性,运用逐次替换法处理滑脱和扩散的非线性.引入动用范围的概念,结合物质平衡方法和牛顿迭代法求得不同时间下的平均压力,以此不断更新模型参数,获得产能的半解析解.结果表明:(1)该方法能高效处理模型的非线性,准确快速地获得页岩气井的产能;(2)忽略气体的压缩性会严重低估气井产能;滑脱和扩散提高了气井产能,但加剧了产量递减;吸附解吸提高了中后期的产能,减缓了产量递减;(3)该方法能很好地拟合矿场生产数据,并预测气井的产能和可采储量.  相似文献   

8.
基于页岩基质的纳米尺度孔隙特征,分析了页岩气在纳米孔隙中渗流的扩散、滑脱和达西渗流等对页岩气流动流量的影响.压差作用下页岩气流量的特征研究表明:达西流动产生的流量与地层压力、压力梯度和渗透率成正比;扩散引发的流量与压力梯度成正比,与平均压力成反比,与渗透率无关;滑脱引发的流量与压力梯度、渗透率成正比,压力梯度和渗透率一定时,滑脱流量为定值,与地层平均压力无关.低压下,气体的扩散效应和滑脱效应明显,扩散产生的流量所占比例较大,高压下渗流以达西流为主;在整个从低压到高压的地层压力区间,在低压下由于扩散作用,总的页岩气有一定的流量,随着地层压力的增大扩散产生的流量减小,到一定值后随着达西流量的进一步增大,总流量随地层压力的增加而增大,说明页岩气生产中存在一个最低效生产的压力区域.水在页岩薄片上吸水过程近似分为三个阶段:(1)水在页岩薄片表面的快速吸附;(2)水在裂缝中较快速度的渗吸;(3)水沿着微裂缝的缓慢渗吸.为页岩气开发中的压裂水的反排特征研究提供了理论基础.  相似文献   

9.
页岩气开发过程中的多尺度传质行为显著,综合考虑页岩多尺度孔隙结构、多种气体传输机理和多种微尺度效应,构建了页岩表观等效渗透率数学模型,分析了实际生产过程中的页岩渗透性变化特征,明确了页岩气多尺度传质行为主控因素(气-固系统性质、孔隙类型及连通性、温度压力条件)的影响,提出了页岩气多尺度传质行为评价指标,即孔隙直径介于50~200 nm孔隙所占比例,从介科学的角度形成了页岩气多尺度传质行为评价方法,并结合页岩气开发所面临的主要问题,凝练了页岩气多尺度传质过程协调机制,即降低水相圈闭损害、沟通基质纳米孔及纳米孔扩容、促进解吸-扩散.  相似文献   

10.
在深层油气藏钻进中,由于井筒与地层连通且安全密度窗口较窄,极易发生物质交换,导致溢流、漏失以及溢漏同存频发,进而引起井筒内的复杂多相流动。为了实现精确控压、确保井控安全,需要掌握各种工况条件下井筒多相流动规律。针对井筒内的复杂多相流动,基于漂移模型建立井筒气液两相流瞬态流动模型,并利用高计算精度的AUSMV格式进行求解。借助MATLAB软件,编程模拟气侵下井筒内的气液两相流动规律,分析气侵量、滑脱速度等参数对井底压力、井口套压、气体速度以及气体体积分数的影响。结果表明:气侵量越大,井底压力、井口套压越大,气体体积分数达到100%的速度越快,气体逆流现象越明显;滑脱速度越大,井底压力和井口套压达到稳定状态的时间越短,气体的运动速度越大,气体体积分数几乎不受滑脱速度的影响;流动参数对井口套压、井底压力和气体体积分数影响较小。该研究可以对精确计算关井后的相关压井参数起到一定的理论指导意义。  相似文献   

11.
湿地甲烷排放研究进展   总被引:6,自引:0,他引:6  
甲烷是一种仅次于二氧化碳的重要温室气体,对全球变暖的贡献率为25%。近年来大气中甲烷浓度显著增加,湿地甲烷释放量约占全球甲烷通量的20%,是大气甲烷的主要自然来源之一。甲烷主要通过产甲烷菌在厌氧条件下产生,在氧化条件下,甲烷通过土壤中的甲烷氧化菌氧化,并通过气泡、扩散和植物传输三种途径释放到大气。湿地甲烷通量在时间和空间两个方面有较大的变化,这与甲烷产生、氧化和传输过程有关,同时受到不同环境因素的影响,如:土壤质地、氧化还原电位、有机物、土壤酸碱度、植被条件、气候因素、农业管理措施等。文章还对湿地甲烷排放的观测方法和排放模型进行了简单介绍,并对今后的研究提出了几点建议。  相似文献   

12.
页岩储层富含纳米级孔隙,因此在纳米尺度上研究孔隙内流体分布特征具有重要意义.本研究基于室内实验,量化评价了页岩及黏土孔隙含水饱和度分布特征,实验发现:在水吸附过程中,黏土孔隙内"毛细凝聚"现象显著,当环境相对湿度较高时,部分小孔隙将被毛管水完全阻塞;而对于页岩样品,无机质孔隙表现出亲水作用,但是有机质表现出憎水作用,页岩整体吸水能力相对较弱.同时,考虑页岩有机质与无机质孔隙形貌特征差异性,建立数学模型研究孔隙形状对吸水特征的影响.结果表明:利用狭缝孔模型计算的吸水曲线与实测结果更接近,因此在研究页岩吸水特征时,应将孔隙形状假设为狭缝孔,而并非通常假设的圆管孔.本研究将对深入认识及评价页岩储层不同类型孔隙内流体的赋存方式及产出机理奠定理论基础.  相似文献   

13.
对流作用下枝晶生长行为的数值模拟   总被引:9,自引:0,他引:9  
应用一个二维的改进元胞自动机(modified cellular automaton, MCA)-传输耦合模型, 对流场作用下枝晶的非对称生长行为进行了模拟研究. 模型采用MCA技术模拟枝晶的生长, 同时采用一个传输模型对流场和由对流和扩散所控制的质量传输进行数值求解. MCA考虑了热过冷、成分过冷和曲率过冷对枝晶生长的作用, 也考虑了枝晶的择优生长方向和凝固过程中的溶质再分配. 在传输模型中, 采用SIMPLE算法求解动量和质量传输的控制方程. 应用该模型模拟研究了Al-3% Cu(质量分数)合金中单枝晶和多枝晶在不同流动方向的流体作用下的生长规律. 模拟结果表明, 金属液对流对枝晶的生长形貌产生重要的影响.  相似文献   

14.
梁世强  徐靖中 《中国科学(E辑)》2004,34(11):1256-1263
为了探索静电荷在极性分子的物理吸附过程中的控制作用, 对甲醇在带静电荷的活性炭纤维(ACF)纳米孔中的吸/脱附情况进行了分子动力学(MD)模拟研究. 在引入静电荷的中孔ACF/甲醇吸附系统中, 从模拟结果可以观测到孔内的甲醇分子扩散到吸附位的时间缩短、吸附冷凝的准液态甲醇密度增大、甲醇分子的空间排列有取向性、达到吸附平衡时系统能量显著降低等特殊现象, 表明了静电荷增强了中孔ACF 对甲醇分子的吸附作用, 使吸附强度、稳定性和有序性有所提高, 能够提高吸附容量和加快吸附速率. 系统达到吸附平衡后再消除静电荷, 升温至60℃左右进行模拟, 可以观察到比较明显的脱附趋势.  相似文献   

15.
页岩气以及无水压裂技术采用的二氧化碳都可使页岩发生吸附变形,影响其裂缝表观渗透率,同时表观渗透率还受到有效应力和流体流态的影响.页岩气渗流过程中多种物理场相互耦合使得吸附应变对表观渗透率的影响不易被分析,常被忽略.本文基于多孔弹性理论和页岩吸附变形的特点,建立了适用于多种边界条件的页岩裂缝表观渗透率模型,提出了分析吸附变形对表观渗透率影响的方案,并分析了一组富有机质页岩样品中吸附应变对其表观渗透率的影响,最终结合页岩气多尺度渗流模型分析了吸附变形对页岩气采收率的影响.研究结果表明:采用不同边界条件和气体测量页岩表观渗透率时,其主控机理并不相同;基于此特点,结合"固定围压"和"固定孔隙压力"条件下的非吸附性气体和吸附性气体测量所得的页岩表观渗透率数据,可以确定内部吸附变形对表观渗透率有较大影响,不可忽略;此外,相较于内部吸附变形,气体吸附引起的页岩整体变形对表观渗透率和页岩气采收率有更大影响.  相似文献   

16.
结合我国南方海相页岩气藏的实际,针对页岩气藏的特殊孔隙结构及多尺度流动的特征,首先由Knudsen数判断出储层主体流态为滑移流,并指出页岩气在页岩多孔介质中的传输过程是一个等温过程.然后修正了Beskok-Karniadakis二阶近似模型,建立了致密页岩气直井平面径向非稳态非线性渗流问题的数学模型.进一步应用玻尔兹曼变换将问题简化,并给出了求解压力场的数值离散显式迭代格式.最后数值计算得到了内边界定压条件下直井的压力场随时间、空间分布曲线,预测了产量随时间变化的规律,并分析了解吸、滑移和扩散效应对产量的影响.  相似文献   

17.
基于改进的容积法等温吸附实验装置,分别测量了甲烷在干燥、平衡水条件下的页岩等温吸附曲线,实验温度为303.15,323.15和353.15 K,实验最高压力达20 MPa,实验数据采用修正的Langmuir方程进行拟合.在开展平衡水页岩吸附实验时,考虑了水蒸气压力,认为实验气体为甲烷与水蒸气混合气体,重新计算了混合气体中甲烷吸附量,并从吸附热力学角度阐述考虑水蒸气压力的意义,最后在地层条件下讨论了水蒸气压力对页岩吸附的影响.结果表明,考虑/未考虑水蒸气压力的平衡水页岩Langmuir最大吸附量分别为0.053和0.039 mmol/g,未考虑水蒸气压力的甲烷吸附量被低估26.4%.干燥页岩的等量吸附热为11.6 k J/mol,考虑与不考虑水蒸气压力的平衡水页岩等量吸附热分别为10.7和12.3 k J/mol,由于水分优先吸附于能量较高的吸附位,在水分存在情况下,平衡水页岩对甲烷的等量吸附热应该小于干燥页岩,因此,经水蒸气压力校正后的等量吸附热更加符合热力学一致性.在地层条件下,水蒸气压力对页岩吸附的影响分为两个阶段:(1)浅埋藏阶段(地层深度小于700 m),此阶段由压力梯度主导,压力梯度越大,水蒸气压力对吸附的影响越大;(2)深埋藏阶段(地层深度大于700 m),此阶段由压力梯度和温度梯度同时控制,压力梯度越大,温度梯度越小,水蒸气压力对吸附的影响越大.  相似文献   

18.
为提升电力变压器绝缘纸的热稳定性,使用纳米Al2O3对绝缘纸进行改性,通过分子模拟和试验的方法研究了纳米Al2O3对绝缘纸纤维素热稳定性的提升效果,并分析了纳米Al2O3对绝缘纸纤维素的改性机理.首先,对纳米Al2O3与纤维素的表面相互作用机理的分析表明纳米Al2O3易于掺杂到纤维素绝缘纸中,得到了Al2O3与纤维素表面相互作用结合能的公式,揭示了公式中相关参数的物理意义.然后,使用半径为5?的纳米Al2O3对纤维素进行改性,通过分子模拟技术研究了经纳米改性后的纤维素的微观参数的变化规律;同时,对改性绝缘纸和未改性绝缘纸进行了宏观热老化试验.模拟与试验结果对比分析表明,经纳米Al2O3改性的绝缘纸纤维素热稳定性有较好的提升.最后,对纳米Al2O3改性绝缘纸纤维素的机理进行了较为深入地分析,为纳米改性变压器绝缘纸性能方面的研究提供了理论支撑.  相似文献   

19.
为了建立适用于超声速流动的湍流扩散燃烧模型,本文首先分析了火焰面模型应用于超声速流动的物理基础,然后数值模拟了轴对称超声速射流形成的氢气/空气扩散燃烧流场,利用实验数据校正了火焰面模型中重要物理量标量耗散率的模型系数.计算结果与实验数据的对比表明,本文修正后的火焰面模型对超声速湍流扩散燃烧流动的模拟能力是令人满意的.基于火焰面模型理论以及数值模拟结果,本文首次研究了湍流脉动对平均状态方程以及化学反应源项的影响机理,得到以下结论:组分浓度和温度脉动相关项对平均状态方程影响很小;温度脉动会降低水的生成速率,但其影响较小;组分浓度脉动在接近于氧化剂一侧区域增加水的生成速率,而在另外的大部分区域会降低水的生成速率;组分浓度与温度的脉动相关作用会很大程度上降低水的生成速率.  相似文献   

20.
纳米流体是由流体与纳米粒子组成的胶体悬浮物, 与普通固液两相流相比, 其传热性能明显增强. 悬浮在流体中的纳米粒子会受到运动阻力、Brown力、粒子间扩散力、重力等内力或外力的影响, 因而其运动规律极其复杂. 根据纳米流体中粒子和液体介质的受力关系, 建立了纳米流体的格子Boltzmann流动与传热模型, 并用于分析纳米粒子的动态分布.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号