首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
为了提高LiNi1/3Co1/3Mn1/3O2的电化学性能,采用非均匀成核法在球形LiNi1/3Co1/3Mn1/3O2表面包敷Al2O3。采用SEM及电化学性能测试对所制备材料的形貌和电化学性能进行表征。研究结果表明:球形LiNi1/3Co1/3Mn1/3O2颗粒由粒径为500~600 nm的一次粒子团聚而成,包敷后的球形LiNi1/3Co1/3Mn1/3O2表面形成了致密的无定形Al2O3包敷层;包覆Al2O3能明显抑制LiNi1/3Co1/3Mn1/3O2在循环过程中的氧化/还原峰电流的衰减,随着Al2O3包敷量的增加,材料的氧化/还原峰的峰电流减小,适量地包敷Al2O3可有效提高材料的可逆性;当Al2O3的包敷量为0.5%时,材料表现出优异的电化学性能,在2.7~4.6 V高电压和1C倍率条件下,材料的首次放电容量为172(mA.h)/g,50次循环后材料的容量保持率仍有93%,而没有包敷的LiNi1/3Co1/3Mn1/3O2容量略低,首次放电容量为170(mA.h)/g,而且容量衰减较快,容量保持率仅为84%。此外,包敷处理还可以有效提高LiNi1/3Co1/3Mn1/3O2材料在电解液中的热稳定性,以包敷材料所制备的电池其高温储存性能明显提高。  相似文献   

2.
采用改进共沉淀法制备LiCo1/3Ni1/3Mn1/3O2正极材料,该法与传统共沉淀法相比,在共沉淀的过程中增加络合剂(NH3.H2O)和分散剂(PEG)。对比研究2种方法制得的产品的形貌和性能。研究结果表明:采用改进共沉淀法制备得到的Ni1/3Co1/3Mn1/3(OH)2前躯体呈球形二次颗粒,粒径为2μm左右,是由球形和片状的一次颗粒组装而成;其与LiOH充分研磨煅烧制得的正极材料LiCo1/3Ni1/3Mn1/3O2,振实密度达到2.78 g/cm3,在0.2C倍率和2.80~4.25 V的电压范围内,首次充、放电比容量分别为185.2和158.3 mA·h/g,30次循环后放电比容量为142.8mA·h/g,容量保持率高达90.2%,电化学性能得到很大的改善。  相似文献   

3.
 三元层状结构LiNi1/3Co1/3Mn1/3O2具有较高的可逆容量、结构稳定性、热稳定性和相对较低的成本,成为电动汽车领域最具前景的锂离子电池正极材料之一。综述了锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2的结构、电化学性能及对其进行性能优化的掺杂、表面包覆和制备特殊纳米结构材料的3 种方法。其中,纳米材料的研究是锂离子电池正极材料的研究热点之一。材料的电化学性能与粒子尺寸、形貌、多孔性、结晶性和比表面积紧密相关。因此,提高正极材料LiNi1/3Co1/3Mn1/3O2的电化学性能时,要充分考虑到这些因素的影响。  相似文献   

4.
层状LiNi1/3Mn1/3CO1/3O2正极材料的合成   总被引:1,自引:0,他引:1  
用碳酸盐同沉淀法合成了LiNi1/3Mn1/3Co1/3O2正极材料,采用XRD(X-RayDiffraction)、SEM(ScanningElectronMicroscope)、差分计时电位法和充放电循环等对材料的物理化学性质及电化学性能进行了测试分析。XRD分析表明在合成温度为800℃或更高时,所合成的产物均为α-NaFeO2型的层状结构,SEM分析表明在合成温度为800或850℃时,产物为微小晶粒团聚成的球形颗粒,合成温度为900℃以上时,产物颗粒发生破碎,形状不规则。950℃合成的LiNi1/3Mn1/3Co1/3O2材料在2·5~4·4V电位区间内,首次放电容量为162mAh·g-1,并具有良好的循环性能。随着充放电电压的升高,首次不可逆放电容量增大,循环稳定性减弱。在低温(800,850℃)下合成的LiNi1/3Mn1/3Co1/3O2材料与高温下(900,950℃)得到的材料性能有很大差别,这是由于在高温和低温下得到材料的结构差别所造成的。  相似文献   

5.
LiNi1/3Co1/3Mn1/3O2正极材料的制备及其表征   总被引:1,自引:0,他引:1  
利用机械球磨对前驱体进行活化处理.在940℃于空气气氛中烧结12 h制备层状结构LiNi1/3Co1/3Mn1/3O2正极材料.通过XRD,SEM和电化学性能测试对所制备材料的结构、形貌及电化学性能进行表征.结果表明,所合成的材料为单相的六方层状结构;产物一次粒子粒径均匀,为1~2 μm,二次团聚颗粒平均粒径为10 μm左右;在2.75~4.3 V电压区间,所制备的LiNi1/3Co1/3Mn1/3O2以0.2C(C为充放电倍率)进行恒电流充放电,首次放电容量达146.3 mA·h·g-1;在倍率为0.4C,0.8C,1.6C和2.0C时的放电容量分别为135.2,130.1,125.8和114.7mA·h·g-1,倍率放电性能优良;在倍率为0.2C时经过30次循环,材料放电容量和容量保持率分别为143.3 mA·h·g-1和98%,循环稳定性好.  相似文献   

6.
采用低热固相反应法制备锂离子电池层状正极材料LiNi1/3Co1/3Mn1/3O2,考察制坯、回火温度和回火时间对合成产物电化学性能的影响。用X射线衍射分析(XRD)和电化学性能测试,对LiNi1/3Co1/3Mn1/3O2进行分析。结果表明:预烧后需要制坯,最佳回火温度为600℃,最佳回火时间为2 h;最佳工艺条件下制备的样品首次放电比容量为150.3 mAh.g-1,30次循环后仍大于130 mAh.g-1。  相似文献   

7.
采用溶胶凝胶法,以硝酸钇和柠檬酸为原料对LiNi1/3Co1/3Mn1/3O2进行包覆. 室温下,在2.8~4.3 V和1 C充放电条件下,以柠檬酸协助的Y2O3包覆LiNi1/3Co1/3Mn1/3O2材料作为正极,锂片作为负极,制成的电池50次循环容量没有衰减,而未加柠檬酸的Y2O3包覆LiNi1/3Co1/3Mn1/3O2材料50次循环容量保持率为96.72%,未经过包覆的材料只有91.03%.  相似文献   

8.
从电解N iCoM n合金出发制得锂离子电池正极材料L iN i1/3Co1/3M n1/3O2.通过XRD、SEM、循环伏安和电化学测试对合成材料的结构、形貌和电化学性能进行了研究,实验结果表明:800℃下合成的样品结构和形貌最优,电化学性能最好,首次充、放电容量达235.4 mA h/g、196.0 mA h/g.循环伏安曲线在3.6~3.8 V和4.55~4.67 V范围内分别有一对氧化还原峰,分别对应N i2 /N i4 和Co3 /Co4 的转化过程.  相似文献   

9.
采用液相共沉淀法与高温固相法合成了La2O3包覆Li(Ni1/3 Co1/3 Mn1/3 )O2的锂离子电池正极材料,采用XRD和电化学方法表征了材料的结构与电化学性能.结果表明,在1 000 ℃焙烧10 h制备的Li(Ni1/3 Co1/3 Mn1/3 )O2材料经包覆2%的La2O3后,具有较佳的电化学性能.其0.1 C倍率首次放电容量和首次充放电效率分别为151.2 mAh·g-1 和83 8%,首次循环后的交流阻抗为162.2 Ω,以0.2 C倍率循环20次后的放电容量为140.7 mAh·g-1 .  相似文献   

10.
水热法制备Co掺杂改性的锂离子电池层状正极材料LiV3-xCoxO8。经X射线衍射和扫描电镜分析表征材料的晶体结构和形貌,恒流充放电循环测试其电化学性能,结果表明:随着Co掺入量增加,材料初始放电容量有所降低,但循环性能得到明显改善,当掺杂量控制在0.01≤x≤0.08范围内时,LiV3-xCoxO8材料的循环性能和充放电可逆性均比未掺杂LiV3O8材料有明显改善。其中,LiV2.99Co0.01O8和LiV2.97Co0.03O8在40次循环之后,都能保持146 mAh.g-1的放电比容量。  相似文献   

11.
采用高温固相法制备LiNi1/3Co1/3Mn1/3O2,溶胶-凝胶法制备AlPO4包覆LiNi1/3Co1/3Mn1/3O2材料(AlPO4-coated LiNi1/3Co1/3Mn1/3O2).并用XRD、SEM检测等对材料进行了表征,用X-射线衍射、扫描电镜分析以及电化学测试等手段对样品的微观结构、表面形貌和电化学性能进行了研究.结果表明:在AlPO4-coated LiNi1/3Co1/3Mn1/3O2中,AlPO4以无定形态包覆于的表面;AlPO4的存在,阻止了电极与电解质溶液之间的副反应,降低了电极的表面膜阻抗和电荷转移阻抗,加快了锂离子的扩散速度,使得LiNi1/3Co1/3Mn1/3O2的循环性能和倍率性能显著改善.  相似文献   

12.
1 Introduction As a promising cathode material for lithium ion batteries,LiNi1/3Co1/3Mn1/3O2 attracted intensive attentions.Owing to high specific capacity,long circle life and excellent safety,it may be an alternative candidate for LiCoO2.As a complex composite,however,it is difficult to synthesize phase-pure LiNi1/3Co1/3Mn1/3O2 by a simple mixed calcination method[1].From this concern,carbonate co-precipitation method,which can prepare homogeneous LiNi1/3Co1/3Mn1/3O2 with typical layered structure,bec...  相似文献   

13.
Surface deterioration occurs more easily in nickel-rich cathode materials with the increase of nickel content. To simultaneously pre-vent deterioration of active cathode materials and improve the electrochemical performance of the nickel-rich cathode material, the surface of nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material is decorated with the stable structure and conductive Li3PO4 by a facile method. The LiNi0.6Co0.2Mn0.2O2–1wt%, 2wt%, 3wt%Li 3PO4 samples deliver a high-capacity retention of more than 85% after 100 cycles at 1 C under a high voltage of 4.5 V. The effect of different coating amounts (0–5wt%) for the LiNi0.6Co0.2Mn0.2O2 cathode is analyzed in detail. Results show that 2wt% coating of Li3PO4 gives better performance compared to other coating concentrations. Detailed analysis of the structure of the samples during the charge?discharge process is performed by in-situ X-ray diffraction. It is indicated that the modification for LiNi0.6Co0.2Mn0.2O2 cathode could protect the well-layered structure under high voltages. In consequence, the electrochemical performance of modified samples is greatly improved.  相似文献   

14.
通过对共沉淀Me2+ (Me = Ni, Co, Mn)-NH3-OH--H2O体系进行热力学分析,拟合出lg[Me]-pH关系曲线。以氢氧化钠为共沉淀剂,氨水为络合剂,采用共沉淀法进行锂离子电池(LIB)正极材料LiNi1/3Co1/3Mn1/3O2前驱体(Ni1/3Co1/3Mn1/3)(OH)2的合成研究。热力学分析结果表明:共沉淀体系的最佳pH值为11,合适的氨水浓度[N]为0.1~0.5 mol/L,此时各种金属阳离子(Me2+)的损失最小。基于以上最佳合成反应条件,在不加其它还原剂和絮凝剂时,所得前驱体材料的振实密度达到1.32 g/cm3。  相似文献   

15.
低温熔盐法合成球形LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2研究   总被引:1,自引:1,他引:0  
采用低温熔盐法合成了锂离子电池正极材料Li Ni1/3Co1/3Mn1/3O2,并就低温熔盐0.62xLi NO3-0.38xLi OH-(1-x)CH3COOLi.2 H2O的具体比例、焙烧温度和焙烧时间对材料的影响进行了对比研究.XRD结果表明以x=0.6的低温共熔盐,经3阶段温度烧结(200℃,3 h;600℃,制备的样品的α-NaFeO2层状结构发育的较为完备.SEM扫描显示材料是由许多片状晶体构成的球形颗粒.材料在2.8~4.3 V范围内充放电,倍率为0.2 C时,首次放电比容量为173.6 mA.h.g-1,循环20次后容量保留97.4%;倍率为1 C时,首放126.0 mA.h.g-1,循环20次后容量保留94.1%.  相似文献   

16.
采用柠檬酸盐法合成了Li[CoxLi 1/3-x/3Mn2/3-2x/3]O2(x=0.1,0.2,0.3,0.4,0.5)正极材料. 利用X射线衍射(XRD), Raman光谱和红外光谱(FTIR)等方法研究不同质量分数的Co对材料晶体结构的影响, 并分析了原因. 对不同组分的材料进行了电化学性能测试, 结果表明, 当x=0.5时, 样品充放电容量高, 循环性能优良.   相似文献   

17.
采用草酸盐共沉淀法合成一系列的Li(Ni1/3Co1/3Mn1/3)1-xCrxO2正极材料(0 ≤x ≤0.1),用X射线衍射仪(XRD)和扫描电子显微镜(SEM)分析合成产物的晶体结构及表面形貌;利用充放电仪测定了产物的电化学性能.结果表明,合成的Li(Ni1/3Co1/3Mn1/3)1-xCrxO2( x = 0.01,0.03,0.05,0.07) 均保持α-2NaFeO2 层状结构相,属于空间R3m点群.Li(Ni1/3Co1/3Mn1/3)0.95Cr0.05O2的电化学性能最佳,首次放电容量达158.6 mAh/g,在2.5~4.5 V区间30次循环后比容量衰竭率仅为3.92%.Li(Ni1/3Co1/3Mn1/3)0.95Cr0.05O2和Li(Ni1/3Co1/3Mn1/3)CrO2 的电极阻抗变化不同,进而影响其电化学性能.  相似文献   

18.
熔融盐法合成球形锂离子电池正极材料LiNi_(0.8)Co_(0.2)O_2   总被引:2,自引:1,他引:1  
采用热分析法对不同组成的LiOH-LiNO3二元体系进行研究,绘制了具有最低共熔点的该二元体系T-x相图,该体系的最低共熔点为175.7℃.利用低共熔混合物LiNO3-LiOH为锂盐,与前驱体球形Ni0.8Co0.2(OH)2混合烧结制备出了球形锂离子电池正极材料LiNi0.8Co0.2O2.探讨了Li/(Ni+Co)摩尔比、合成温度、合成时间等因素对产品的影响.X射线衍射分析表明合成的材料具有规整的层状NaFeO2结构,SEM表明所得材料为球形.充放电测试表明在3.0~4.3的电压范围内,首次放电比容量可达170 mAh.g-1,充放电效率为95.5%.结果表明采用该工艺可以制备出电化学性能良好的LiNi0.8Co0.2O2正极材料.  相似文献   

19.
文章采用固相法合成了电化学性能优异的碳包覆的锂离子电池负极材料Li3.9Mn0.1Ti5O12/C,并对材料进行了XRD、激光粒度分析、循环伏安测试及恒电流充放电测试。结果表明:Mn的掺杂未改变材料的晶体结构,由于Mn4+对Li4Ti5O12的晶胞内部的掺杂和C对其晶胞外部的包覆,使复合材料的电导率,大电流循环稳定性和可逆比容量都明显提高。在1C充放电循环时,Li3.9Mn0.1Ti5O12/C首次放电容量为162.4mAh/g,50次循环后,稳定在159.6mAh/g,容量保持率为98.3%;在2C充放电循环时,首次放电容量达到了153.5mAh/g,展示了优良的电化学特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号