首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
利用快速傅立叶变换 (FFT) ,给出了 n阶循环矩阵开平方的一个快速算法 ,计算循环矩阵的同型平方根矩阵 (平方根矩阵也是循环矩阵 ) ,证明了同型平方根矩阵的个数为 2 n ,它是关于 n的指数函数 ;计算一个同型平方根矩阵的时间复杂性为 O(nlog2 n) ;计算全部同型平方根矩阵的时间复杂性为 O(n2 n) .  相似文献   

2.
借助于快速傅氏变换(FFT)技术,给出了计算2个n阶置换因子循环矩阵之乘积阵的一种快速算法,其算术复杂性为O(nlog2n),最后给出一个算例.  相似文献   

3.
借助于快速付氏变换(FFT)技术。给出了计算两阶鳞状因子循环矩阵之乘积阵的一种快速算法,其算法复杂性为O(nlog2n)。最后给出一个算例。  相似文献   

4.
文章首先给出n阶r-循环矩阵及其行列式的定义;然后,分别用析因子法、作辅助行列式法及特征根法证明了n阶r-循环行列式的计算公式|D|=nⅡk=1 f(xk);最后,给出该公式在两个方面的应用:(1)用来计算具有某些特征的行列式的值;(2)可以推出一些有关多项式的有趣结论.  相似文献   

5.
本文给出了两个n阶Toeplitz矩阵(或Hankcl矩阵)相乘以及Toeplitz矩阵与Hankel矩阵相乘的快速算法,这些算法的计算复杂性都为6n~2+O(nlog_2n)。  相似文献   

6.
指出了瓶颈斯坦纳树问题要求寻找一棵用至多k个斯坦纳点将n个点连接起来使得此斯坦纳树之最长边最短的斯坦纳树,该问题在VLSI、无线通讯网络和生命演化树重建等领域都有应用.Du和Wang证明网格空间瓶颈斯坦纳树问题是NP-Hard,不存在近似性能比低于2的多项式时间解决方案,并且提出一个近似性能比为2的多项式时间近似算法,算法的实际时间复杂度为O(nlog2n+kn+k2).通过引入二叉堆和斐波那契堆使算法的时间复杂度分别改进到了O(nlog2n+klog2n)和摊还时间O(nlog2n+klog2n).该改进可直接应用于欧几里得平面的瓶颈斯坦纳树2-近似算法.  相似文献   

7.
求Hankel矩阵的逆矩阵的快速算法   总被引:1,自引:0,他引:1  
利用Hankel矩阵的位移性质,得到了矩阵为Hankel矩阵的充要条件.从该充要条件出发,得到了求Hankel矩阵之逆矩阵的快速算法,计算复杂度为O(n2),而一般n阶矩阵求逆的复杂度为O(n3).  相似文献   

8.
给出了n阶k次广义对合矩阵的定义,通过类比n阶k次对合矩阵的性质,进而研究n阶k次广义对合矩阵所具有的一些性质,同时也给出可逆n阶k次广义对合矩阵的一些性质。  相似文献   

9.
应用初等的组合方法和三角矩阵知识,给出了两n阶实对称循环Toeplitz矩阵相乘的一种快速算法.该算法的时间复杂性为nr次乘法和(n-1)r次加法,其中r=[n2]+1.  相似文献   

10.
对于给定的数域F上的n阶矩阵A,给出并证明了k阶子式阵Ck(AB)的伴随矩阵C*k(AB)的一个性质:C*k(AB)=C*k(B)C*k(A),从而使一般意义下的伴随矩阵的性质(AB)*=(B)*(A)*得到推广.  相似文献   

11.
本文给出了拟希尔伯特阵和一般阵相乘的快速串行与并行算法。对于串行计算,时间复杂性是O((nlogn)~2),对于并行计算,在有n台处理机的条件下,其计算步数是O(nlog~2n),而效率是O(1)。  相似文献   

12.
利用线性方程组是否有解给出Hankel矩阵、Vandermonde矩阵可逆的条件及求逆的递推公式,并给出了逆矩阵新的表示式.表明Hankel矩阵、Vandermonde矩阵的逆矩阵可以表示为一些特殊矩阵的乘积之和,并以Hankel矩阵为例,得到了求逆的快速算法,所需计算量为O(n^2),一般n阶矩阵求逆的计算量为O(n^2).  相似文献   

13.
分析讨论了正交辛矩阵的性质;研究了现有两种构造随机正交辛矩阵算法的特点;给出了一种构造完全随机的正交辛矩阵的数值实现方法,该完全随机的正交辛矩阵在求解Hamilton矩阵的保结构算法的数值试验中有重要用途。  相似文献   

14.
给出了对称Loewner型矩阵的逆矩阵的一种快速三角分解算法,算法所需运算量为O(n^2)。  相似文献   

15.
本文提出了一个缩减非对称稀疏矩阵的带宽和外形的算法,这里的算法实际上是逆CM算法对非对称矩阵的推广。主要结果是: 1.提出所谓交替分层结构概念2.证明了几个类似于[5]中的结论实践表明,这种算法能有效的缩减非对称稀疏矩阵的带宽和外形  相似文献   

16.
设随机矩阵U属于n阶实正交群O(n),O(n)的分布是单位Haar分布,[U]m表示U的m阶顺序主子矩阵,记Q=n/m~(1/n/m)[U]m.文献(Diaconis P,Shahshahani M.J Appl Probab,1994,A31:49-62.)通过计算TrUj的联合矩得出对固定的整数k,当n充分大时(TrU,TrU2,…,TrUk)渐进于正态分布.利用Jack函数和对称群的特征标的恒等式,推广这一结论到U的子矩阵情形,即证明了随机向量(TrQ,TrQ2,…,TrQk)当m→+∞时依分布收敛于正态分布.对特殊实正交矩阵群SO(n)也有类似的结论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号