首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
通过大量量子化学计算,拟合确定了非金属硼化物体系模型分子的ABEEMσπ参数.将这些参数应用到ABEEMσπ模型中计算非金属硼化物模型分子的电荷分布,计算结果显示,ABEEMσπ模型计算得到的电荷分布与从头算计算的电荷分布都有很好的一致性.还计算了测试分子的电荷分布从而验证了ABEEMσπ参数的可转移性,电荷分布变化的规律是在BF3,BCl3,BBr3,BI3分子中B原子电荷逐渐减小,F,Cl,Br,I原子电荷逐渐增大.ABEEMσπ模型可以很好地应用于非金属硼化物的结构和性质的分析.  相似文献   

2.
使用B3LYP/6-311++G(d,p)方法,优化获得含有羟基的训练集分子的稳定几何结构,以HF/STO-3G方法所计算的Mulliken电荷为基准,采用线性回归和最小二乘法调试出ABEEMσπ方法计算电荷所需要的参数(价态电负性χ*和价态硬度η*).探讨拟合训练集分子中与羟基相连的C原子和与羟基的H原子的电荷差值与实验pK_a值的线性方程.通过该线性方程和ABEEMσπ所计算的电荷,估算出一些含有羟基测试集分子的pK_a值.这些分子包括了12个含有羟基的有机小分子;1个Tyr二肽、6个Ser二肽;质子化和中性的Trp-cage蛋白质.使用ABEEMσπ方法所估算的pK_a值与实验值很接近.因此,ABEEMσπ方法能快速估算其他含有羟基分子的pK_a值.  相似文献   

3.
应用原子-键电负性均衡方法中的σπ模型(ABEEMσπ模型),通过大量量子化学计算,拟合确定了含铝金属酶体系的ABEEMσπ参数.将这些参数应用到含铝金属酶大分子体系的电荷分布及Fukui函数的计算,结果显示,ABEEMσπ模型计算得到的电荷分布及Fukui函数与从头算和实验结论均有很好的一致性.还进一步计算分析了1L3R酶与丝氨酸结合前后的分子各区域的电荷分布,结果表明,Al 3+是1L3R酶的活性中心,根据结合后分子的Fukui函数可以得出丝氨酸会使1L3R酶的活性降低.另外,通过比较两者结合前后Al 3+的广义Fukui函数,证明了广义Fukui函数可用于该体系分子间反应活性的比较,同时也说明利用ABEEMσπ模型来预测含铝金属酶的抑制剂是可行的.  相似文献   

4.
在PDB数据库中选取一系列的含锌蛋白模型分子并采用B3LYP/6-31+G*方法对氢原子进行部分优化,以Mulliken电荷为基准,利用线性回归和最小二乘法进行电荷分布计算,拟合出一套适用于含锌蛋白分子电荷计算的ABEEMσπ模型电荷参数.通过测试分子的检验,说明参数具有很好的可转移性.将拟合好的电荷参数融入ABEEMσπ浮动电荷极化力场,对3个蛋白质片段进行了力场优化并与PDB结构进行对比,得到相应键长和键角的偏差并统计了均方根偏差.键长均方根偏差最大值为0.005 6nm,键角均方根偏差最大值为3.75°.从优化结果来看,ABEEMσπ浮动电荷极化力场的参数是合理的,可以应用到更大的含锌蛋白体系中.  相似文献   

5.
把分子力场(MM)和原子-键电负性均衡方法(ABEEMσπ)协调融合在一起,采用ABEEMσπ/MM方法的分子能量计算方法,选取直链烷烃(n=1~10)、丙酮、丁酮、3-戊酮、N-甲基乙酰胺(NMA)、丙氨酸二肽和若干种氨基酸作为模型分子,计算模型分子能量,从而得到不同类型原子价态能量参数.应用这些原子价态能量参数,计算小分子肽的能量.把所得结果与从头算(MP2/6-311++G(d,p))方法计算的结果相比,得出小分子肽能量的绝对偏差小于9.000 0 kcal/mol,相对偏差小于19.000 0×10-6,且均方根偏差3.450 0 kcal/mol,相对均方根偏差6.919 0×10-6.以上结果表明,ABEEMσπ/MM方法计算的分子能量结果与从头算(MP2/6-311++G(d,p))方法计算的结果具有较好的一致性,此外,用ABEEMσπ/MM方法计算分子能量要远远快于从头算(MP2/6-311++G(d,p))方法.  相似文献   

6.
采用B3LYP/6-311++G(d,p)理论水平优化获得体系的稳定几何结构.在相同的理论水平下,使用SMD溶剂模型,计算这些分子在水溶剂中的溶剂化自由能,并以其作为标准值.将各分子的稳定结构作为初始结构,在298 K、NVT系综下,应用ABEEMσπ可极化分子力场,对氨基酸侧链分子的水溶液进行分子动力学模拟,模拟的时间为1ns.平衡后的结构作为训练集,以调节和确定ABEEMσπ的相关参数,最终得到与从头计算相一致的溶剂化自由能.使用相同的参数,计算带电氨基酸二肽的溶剂化自由能,ABEEMσπ的计算结果与从头计算结果具有良好的一致性,表明该参数具有可转移性,这为研究多肽和蛋白质分子的溶剂化自由能奠定了基础.  相似文献   

7.
应用量子化学方法和原子-键电负性均衡方法(ABEEM)对Na+(H2O)n和K+(H2O)n(n=1~6)体系进行研究.采用MP2/6-31++G(d,p)方法进行几何构型的优化及频率的计算,在MP2/6-311++G(2d,2p)方法下计算了能量.以HF/STO-3G所计算的体系电荷为基准,拟合确定了Na+和K+的ABEEM参数,应用其计算所得的Na+(H2O)n和K+(H2O)n(n=1~6)的电荷分布,与从头计算的结果一致.  相似文献   

8.
以密度泛函和电负性均衡原理为基础发展的原子-键电负性均衡方法的σπ模型(ABEECσπ).并结合自编程序,计算了鸟嘌呤五种异构体的电荷分布和偶极矩,计算结果表明,所计算出的电荷分布可以和从头算结果很好地关联.所计算的偶极矩与其它从头计算方法和力场方法相比总体趋势相同,进一步说明了ABEEMσπ模型的合理性.  相似文献   

9.
分子静电势是量子化学的理论指标,可以用来判断分子的某些性质,尤其是分子的反应活性.由于静电势由分子本身的性质决定,不同分子在其周围空间各点产生的静电势不同,因此可以采用静电势来描述分子本身的性质.建立了一种新的快速计算分子静电势的方法,并以HF、H2O、NH3和CH4小分子为例计算了他们的静电势.其中的电荷采用原子-键电负性均衡方法σπ模型(ABEEMσπ)计算的结果,结构由MP2/6-311++G(d,p)方法优化所得.基于杨等人建立的内禀特征轮廓理论,绘制了相应的分子静电势分布图.结果与从头算符合得很好,为大分子静电势的计算打下基础.  相似文献   

10.
使用密度泛函B3LYP/6-311++G(d,p)方法对组氨酸二肽与水团簇的结构进行优化,在MP2/aug-cc-pVDZ水平下计算了这些体系的结合能,同时考虑了基组重叠误差(BSSE)和零点能(ZPE)校正.应用ABEEMσπ浮动电荷分子力场优化了组氨酸二肽与水分子所形成的团簇结构,计算了氢键键长和氢键键角,同时计算了组氨酸二肽与1~6个水分子所形成的团簇His(H2O)n(n=1~6)的结合能,探讨了氢键的协同效应.将ABEEMσπ浮动电荷分子力场、OPLSAA和AMBER力场所得的结果与从头算方法的结果进行了比较,ABEEMσπ的结果好于OPLS-AA和AMBER力场的,可与从头算方法所得到的结果相媲美.  相似文献   

11.
以密度泛函理论(DFT)和电负性均衡原理为基础,明确处理了双键的结构,发展建立原子一键电负性均衡方法中的σπ模型(ABEFMσπ).本模型将双键划分为一个σ键区域和四个π键区域(每个双键原子各有2个π键区域),其中,σ电荷中心位于两成键原子之间共价半径之比处;π电荷中心垂直于双键所在平面,置于双键原子上下两侧.本文给出分子中各部分有效电负性的精密公式,以及参数确定方法.并应用该方法简捷快速地计算了C  相似文献   

12.
使用ABEEMσπ浮动电荷极化分子力场,在298 K ,NVT 系综下对5种构象的A la四肽水溶液进行了动力学模拟。计算了动力学平衡态下A la四肽中非氢原子的均方根偏差。结合广义玻恩模型(GB)计算了溶剂化自由能的极性部分,使用SA 方法计算了溶剂化自由能的非极性部分。溶剂化自由能的结果表明,A la四肽αR螺旋和β折叠构象容易在水溶液中存在。使用类似方法分别对Gly ,Leu ,Val ,Asn和Asp四肽的αL螺旋构象水溶液进行了动力学研究,计算了这5种四肽的溶剂化自由能。结果表明,A sp和A sn四肽亲水性较强,Leu、Val和Ala四肽疏水性较强,Gly 四肽居中,此结论与实际相符。该类研究为ABEEMσπ浮动电荷力场用于其他生物大分子体系奠定了很好的基础。  相似文献   

13.
应用ABEEM/MM模型研究甘氨酸与水的氢键作用   总被引:3,自引:3,他引:0  
应用原子-键电负性均衡方法中的浮动电荷分子力场(ABEEM/MM),我们构建了1个新的甘氨酸(Glycine)-水势能函数,并将其应用到甘氨酸与水组成的二聚体的研究中.首先研究了甘氨酸单体的几何构型,构型结果与可获得的实验数据显示了很好的一致性;根据对甘氨酸中氮原子和氧原子的孤对电子电荷分布的ABEEM/MM方法分析,可以解释水与作用点形成氢键的强弱;进而研究了甘氨酸与1个水作用的结合能,ABEEM/MM模型与从头计算方法得到的结果显示了很好的一致性.表明我们势能函数的合理性以及参数的正确性.  相似文献   

14.
使用原子-键电负性均衡模型(ABEEM),计算了一些任意选取的有机大分子的电荷分布和分子电负性。计算结果很好地重复了相应的从头计算结果,但却更加快捷、省时,展示了原子-键电负性均衡模型的广阔应用前景。  相似文献   

15.
对于碱基-蛋白质之间的相互作用,氢键的形成及断裂起着重要的作用.选取7种氨基酸二肽和3种碱基,以它们之间形成单根氢键的体系为研究对象,在ab initioB3LYP/6-311++G(d,p)水平下进行结构优化,MP2/6-311++G(d,p)水平下进行能量的计算.同时应用ABEEMσπ/MM方法优化结构和计算能量.通过改变氢键相互作用区域的静电相互作用参数kH-bond和形成氢键的氢原子与其受体原子的孤对电子之间距离Rlp,H来拟合函数kH-bond(Rlp,H).用所得函数对选取的复合物进行结合能计算,其结果与ab initio方法所得的结果符合的很好.  相似文献   

16.
在以密度泛函理论和电负性均衡原理为基础的原子-键电负性均衡方法的σ-π模型(ABEEMσ-π)中,利用最小二乘法并结合自编程序,通过大量的量子化学计算拟合确定了氢、氮、氧、硫、氯以及镉(Ⅱ)等各种类型的原子及相关化学键区域的ABEEMσ-π参数.将这些参数应用到研究镉(Ⅱ)配合物的电荷分布,结果显示由ABEEMσ-π模型计算的电荷分布与量子化学计算结果有很好的一致性,线性相关系数在0.93~0.99之间.进一步验证了ABEEMσ-π模型的合理性和可靠性,发展了该模型在第五周期过渡金属中的应用.  相似文献   

17.
应用以密度泛函理论和电负性均衡原理为基础的原子-键电负性均衡方法中的σ-π模型(ABEEMσ-π),通过大量的量子化学计算,利用最小二乘法,并结合我们自编的程序,拟合确定了稠杂环化合物的ABEEMσ-π各参数.进而,将这些参数应用到研究叶酸及维生素B2等稠杂环药物分子体系的电荷分布,结果显示由ABEEMσ-π模型获得的电荷分布与量子化学方法的计算结果有很好的一致性,线性相关系数均达到0.98以上.这说明我们拟合的参数是正确的,也进一步验证了ABEEMσ-π模型的合理性和可靠性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号