首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应用原子-键电负性均衡方法中的σπ模型(ABEEMσπ模型),通过大量量子化学计算,拟合确定了含铝金属酶体系的ABEEMσπ参数.将这些参数应用到含铝金属酶大分子体系的电荷分布及Fukui函数的计算,结果显示,ABEEMσπ模型计算得到的电荷分布及Fukui函数与从头算和实验结论均有很好的一致性.还进一步计算分析了1L3R酶与丝氨酸结合前后的分子各区域的电荷分布,结果表明,Al 3+是1L3R酶的活性中心,根据结合后分子的Fukui函数可以得出丝氨酸会使1L3R酶的活性降低.另外,通过比较两者结合前后Al 3+的广义Fukui函数,证明了广义Fukui函数可用于该体系分子间反应活性的比较,同时也说明利用ABEEMσπ模型来预测含铝金属酶的抑制剂是可行的.  相似文献   

2.
采用B3LYP/6-311++G(d,p)方法,优化了4个锌指蛋白分子和31个模型分子的几何构型,使用HF/STO-3G计算了优化后体系的Mulliken电荷分布.使用线性回归和最小二乘法,拟合确定了ABEEMσπ参数(包括参考电荷,价态电负性和价态硬度).使用ABEEMσπ参数,计算获得了4个锌指蛋白和11个配体的电荷分布.ABEEMσπ方法所计算的电荷分布与从头计算方法的线性相关方程斜率k接近1.000,截距b接近于0.000,线性相关系数R在0.943 4以上.由此可见,ABEEMσπ方法与从头计算方法相比有很好的一致性.验证了笔者所拟合的ABEEMσπ参数是合理的和可转移的,可应用于类似体系的电荷分布的计算.  相似文献   

3.
在PDB数据库中选取一系列的含锌蛋白模型分子并采用B3LYP/6-31+G*方法对氢原子进行部分优化,以Mulliken电荷为基准,利用线性回归和最小二乘法进行电荷分布计算,拟合出一套适用于含锌蛋白分子电荷计算的ABEEMσπ模型电荷参数.通过测试分子的检验,说明参数具有很好的可转移性.将拟合好的电荷参数融入ABEEMσπ浮动电荷极化力场,对3个蛋白质片段进行了力场优化并与PDB结构进行对比,得到相应键长和键角的偏差并统计了均方根偏差.键长均方根偏差最大值为0.005 6nm,键角均方根偏差最大值为3.75°.从优化结果来看,ABEEMσπ浮动电荷极化力场的参数是合理的,可以应用到更大的含锌蛋白体系中.  相似文献   

4.
首次开发ABEEM方法应用于含金属离子Ga~(3+)蛋白体系的研究.ABEEM方法将分子电荷分解到了原子区域、σ键区域、π键区域和孤对电子区域.对金属离子Ga~(3+)与蛋白之间的相互作用采用成键模型,Ga~(3+)与配体原子之间有键电荷分布.通过蛋白晶体数据库的搜索,总结出Ga~(3+)离子和蛋白相互作用的模型分子,确定了相关的新的电荷参数.应用ABEEM方法对模型分子的电荷分布、电荷转移和Ga~(3+)离子的电荷进行了计算和分析.结果表明,ABEEM方法计算的电荷可以和从头算的HF/STO-3G方法的结果相比拟,可以快速给出所有的模型分子的电荷分布.并且通过金属离子Ga~(3+)蛋白大分子体系的电荷计算验证了ABEEM方法以及电荷参数的正确性和可转移性.高价态的Ga~(3+)离子和蛋白的相互作用的理论研究,为其动力学模拟研究奠定了基础.  相似文献   

5.
使用B3LYP/6-311++G(d,p)方法,优化获得含有羟基的训练集分子的稳定几何结构,以HF/STO-3G方法所计算的Mulliken电荷为基准,采用线性回归和最小二乘法调试出ABEEMσπ方法计算电荷所需要的参数(价态电负性χ*和价态硬度η*).探讨拟合训练集分子中与羟基相连的C原子和与羟基的H原子的电荷差值与实验pK_a值的线性方程.通过该线性方程和ABEEMσπ所计算的电荷,估算出一些含有羟基测试集分子的pK_a值.这些分子包括了12个含有羟基的有机小分子;1个Tyr二肽、6个Ser二肽;质子化和中性的Trp-cage蛋白质.使用ABEEMσπ方法所估算的pK_a值与实验值很接近.因此,ABEEMσπ方法能快速估算其他含有羟基分子的pK_a值.  相似文献   

6.
基于量子化学(QM)计算和原子-键电负性均衡浮动电荷分子力场(ABEEMσπ/MM),构建了1,2-二棕榈酰磷脂酰胆碱(1,2-dipalmitoyl-sn-phosphatidylcholine,DPPC)分子的可极化势能函数.首先将DPPC分子分成乙基三甲基铵(ETMA)、乙酸甲酯(MAS)、磷酸二甲酯(DMP)和烷烃等官能团模型小分子片段,依据这些模型分子的QM结果,优选并确定相关电荷参数及力场参数.应用ABEEMσπ/MM对模型小分子的计算结果与QM计算结果符合很好,其中,稳定结构的键长、键角、二面角的绝对平均偏差(AAD)分别为0.000 5nm、1.59°和1.33°,两者的电荷分布的线性相关系数为0.968 8.进一步将上述函数应用到研究DPPC分子的结构和电荷分布,并与QM结果相比,结果表明:键长、键角、二面角的AAD和均方根偏差(RMSD)分别仅为0.000 01和0.000 02nm、0.006°和0.009°、0.007°和0.011°;两者计算得到的电荷分布的线性相关系数为0.965 9.  相似文献   

7.
以密度泛函和电负性均衡原理为基础发展的原子-键电负性均衡方法的σπ模型(ABEECσπ).并结合自编程序,计算了鸟嘌呤五种异构体的电荷分布和偶极矩,计算结果表明,所计算出的电荷分布可以和从头算结果很好地关联.所计算的偶极矩与其它从头计算方法和力场方法相比总体趋势相同,进一步说明了ABEEMσπ模型的合理性.  相似文献   

8.
将ABEEMσπ浮动电荷模型与generalized Born(GB)模型相结合,计算分子的溶剂化自由能.GB模型是一种连续介质模型,计算快速而简单,但是这种模型的计算精度却尚待提高.由于ABEEMσπ浮动电荷模型将分子的电荷区域进行了详细划分,分为原子区域、单键和双键区域、孤对电子区域,而且双键区域又更详细地分为1个σ键和4个π键区域,充分考虑了在外界环境发生变化的情况下,分子内部各个原子电荷重新排布,因而极大地提高了GB模型的计算精度.利用该方法快速准确地计算了几个烷烃小分子的溶剂化自由能.  相似文献   

9.
应用ABEEMσπ/MM(σπ水平的原子与键电负性均衡方法融合进分子力学)浮动电荷模型以及显性ABEEM-7P水模型,对GA88和GB88两个蛋白质分子进行了分子动力学模拟.分析了2个蛋白质的动力学性质,包括蛋白质的回旋半径、疏水表面积和亲水表面积、各类原子位置的均方根偏差以及氢键分布.通过对比水溶液和真空下2个蛋白质的回旋半径,表明该模型很好地体现了蛋白质的"电致紧缩"现象;对疏水表面积和亲水表面积的计算表明,GB88中残基与溶剂的相互作用更强一些;非氢原子位置的均方根偏差及氢键分布情况与实验结构相比较表明,ABEEMσπ/MM浮动电荷模型模拟的GA88和GB88的结构与实验结构有很好的一致性,进而说明该模型的合理性和参数的可转移性.  相似文献   

10.
以密度泛函理论(DFT)和电负性均衡原理为基础,明确处理了双键的结构,发展建立原子一键电负性均衡方法中的σπ模型(ABEEMσπ),本模型将双键划分为一个σ键区域和四个π键区域(每个双键原子各有2个π键区域),其中,σ电荷中心位于两成键原子之间共价半径之比处;π电荷中心垂直于双键所在平面,置于双键原子上下两侧。本文给出分子中各部分有效电负性的精密公式,以及参数确定方法,并应用该方法简捷快速地计算了C18N3O3H27C15NO2H21,以促甲状腺激素放激素TRH等有机和生物大分子体系的电荷分布,得到的结束可以和相应的从头算项媲美。  相似文献   

11.
应用在密度泛函理论和电负性均衡原理基础上发展的原子-键电负性均衡方法的σπ模型(即ABEEM σπ模型),并结合自编程序,对5种典型的含氮杂环化合物的电荷分布进行了计算. 计算结果表明,所得的电荷分布可以和从头计算结果有非常好的一致性,进一步验证了ABEEM σπ模型的合理性和可靠性  相似文献   

12.
分子的许多物理和化学性质都与其静电势密切相关.分子静电势是指分子在空间某一位置产生的分子静电作用势能,分子之间的相互作用可以通过静电势这个物理量来表述.利用ABEEMσπ模型计算出回归到各原子位点的电荷分布,结合自编Fortran程序可快速计算得到分子的静电势,将其投影到分子形貌轮廓上,即可得到在分子形貌上的静电势分布图.笔者选取咪唑、吡唑、噻吩、噻唑和异噻唑等五元环配合物作为模型分子,分别采用从头计算方法和ABEEM模型方法计算它们的分子静电势,并将其投影到分子形貌上.通过比较,ABEEM模型方法不仅可以快速计算分子的静电势,且与从头计算所得结果一致.  相似文献   

13.
应用以密度泛函理论和电负性均衡原理为基础的原子-键电负性均衡方法中的σ-π模型(ABEEMσ-π),通过大量的量子化学计算,利用最小二乘法,并结合我们自编的程序,拟合确定了稠杂环化合物的ABEEMσ-π各参数.进而,将这些参数应用到研究叶酸及维生素B2等稠杂环药物分子体系的电荷分布,结果显示由ABEEMσ-π模型获得的电荷分布与量子化学方法的计算结果有很好的一致性,线性相关系数均达到0.98以上.这说明我们拟合的参数是正确的,也进一步验证了ABEEMσ-π模型的合理性和可靠性.  相似文献   

14.
把分子力场(MM)和原子-键电负性均衡方法(ABEEMσπ)协调融合在一起,采用ABEEMσπ/MM方法的分子能量计算方法,选取直链烷烃(n=1~10)、丙酮、丁酮、3-戊酮、N-甲基乙酰胺(NMA)、丙氨酸二肽和若干种氨基酸作为模型分子,计算模型分子能量,从而得到不同类型原子价态能量参数.应用这些原子价态能量参数,计算小分子肽的能量.把所得结果与从头算(MP2/6-311++G(d,p))方法计算的结果相比,得出小分子肽能量的绝对偏差小于9.000 0 kcal/mol,相对偏差小于19.000 0×10-6,且均方根偏差3.450 0 kcal/mol,相对均方根偏差6.919 0×10-6.以上结果表明,ABEEMσπ/MM方法计算的分子能量结果与从头算(MP2/6-311++G(d,p))方法计算的结果具有较好的一致性,此外,用ABEEMσπ/MM方法计算分子能量要远远快于从头算(MP2/6-311++G(d,p))方法.  相似文献   

15.
并行程序实现ABEEM σπ模型电荷分布计算   总被引:3,自引:2,他引:1  
对以密度泛函理论和电负性均衡原理为基础发展的原子-键电负性均衡方法中的σπ模型(ABEEM σπ模型)进行分析得出,利用该模型计算分子体系的电荷分布时,最耗费时间的部分是求解线性方程组.根据解线性方程组的串行程序,我们提出在并行环境下不带平方根的Cholesky分解方法.结果表明,利用改编后的并行程序能快速而准确地计算分子的电荷分布,算法随着矩阵规模的增大,并行效率也随之增高,即分子体系越大结果越理想.因此本算法适用于大规模问题的计算.  相似文献   

16.
分子静电势是量子化学的理论指标,可以用来判断分子的某些性质,尤其是分子的反应活性.由于静电势由分子本身的性质决定,不同分子在其周围空间各点产生的静电势不同,因此可以采用静电势来描述分子本身的性质.建立了一种新的快速计算分子静电势的方法,并以HF、H2O、NH3和CH4小分子为例计算了他们的静电势.其中的电荷采用原子-键电负性均衡方法σπ模型(ABEEMσπ)计算的结果,结构由MP2/6-311++G(d,p)方法优化所得.基于杨等人建立的内禀特征轮廓理论,绘制了相应的分子静电势分布图.结果与从头算符合得很好,为大分子静电势的计算打下基础.  相似文献   

17.
应用ABEEM/MM浮动电荷模型(原子一键电负性均衡方法融合进分子力场)对气态丝氨酸和苏氨酸残基二肽分子构象进行了初步的研究,与经典的力场模型相比,该方法中的静电势包含了分子内和分子间的静电极化作用,以及分子内电荷转移影响,同时加入了化学键等非原子中心电荷位点,合理的体现了分子中的电荷分布。相对其他极化力场模型,该模型具有计算量较小的特点。结果表明:我们模型计算的两种二肽分子的构象能和关键二面角结构与从头计算结果符合得很好,优于其他力场模型。  相似文献   

18.
在ABEEMσπ/MM浮动电荷模型下,为了防止电荷过度极化,提高力场的准确性,引入了氢键拟合函数klp,H(Rlp,H)在氢键相互作用区域代替总校正系数k来描述氢键相互作用.选取了8个模型小分子二聚体,通过拟合在氢键两个区域之间不同距离时从头计算结果的结合能,来拟合ABEEMσπ/MM方法下的氢键拟合函数.应用该氢键拟合函数在ABEEMσπ/MM方法下计算小分子二聚体的结合能,与从头算方法得到的结合能有很好的一致性.同时对具有同样类型氢键的其他二聚体的结合能进行了计算,与从头算结果相近,说明这些函数具有良好的可转移性.  相似文献   

19.
在以密度泛函理论和电负性均衡原理为基础的原子-键电负性均衡方法的σ-π模型(ABEEMσ-π)中,利用最小二乘法并结合自编程序,通过大量的量子化学计算拟合确定了氢、氮、氧、硫、氯以及镉(Ⅱ)等各种类型的原子及相关化学键区域的ABEEMσ-π参数.将这些参数应用到研究镉(Ⅱ)配合物的电荷分布,结果显示由ABEEMσ-π模型计算的电荷分布与量子化学计算结果有很好的一致性,线性相关系数在0.93~0.99之间.进一步验证了ABEEMσ-π模型的合理性和可靠性,发展了该模型在第五周期过渡金属中的应用.  相似文献   

20.
在密度泛函理论和电负性均衡原理的理论框架下 ,发展了直接用于计算原子及键电荷分布的原子 键电负性均衡方法的σπ模型 ,本文应用此模型计算了氨基酸和一些较大多肽分子的电荷分布 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号