首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 218 毫秒
1.
为了预测液黏离合器的温度场分布及热负荷特性,通过数值模拟研究求得摩擦副散热面的对流换热系数。应用计算流体动力学软件CFX建立了摩擦副流固耦合有限元模型,获得了摩擦副的温度场分布,综合考虑换热表面形状、摩擦片转速、油液流速和入口压力、流体物理性质等因素,揭示了各因素与对流换热系数之间的内在联系。结果表明:摩擦副温度从内径到外径逐渐升高,菱形区域中心温度比四周高。摩擦片转速越大对流换热系数越大;油液黏度越小,入口压力越大,对流换热系数越大。可见,油液流速对换热系数的影响最为显著;摩擦片转速、油液的入口压力和黏度会改变流速及流体的运动状态,从而影响对流换热系数。  相似文献   

2.
以某车辆的湿式换挡离合器为研究对象,分析多参数耦合下湿式换挡离合器的滑摩特性.基于多体动力学和Hertz接触理论,在ADAMS软件中建立和验证离合器动态分析模型,仿真研究接合油压、摩擦副主、从动件初始转速差、摩擦因数,以及摩擦片刚度等因素对湿式换挡离合器滑摩特性的影响规律.结果表明:适当提高接合油压,增大摩擦因数、摩擦片刚度和摩擦副主、从动件初始转速差,可以有效改善湿式换挡离合器滑摩特性.  相似文献   

3.
湿式换挡离合器摩擦片磨损规律研究   总被引:3,自引:0,他引:3  
研究湿式换挡离合器摩擦片工作过程的磨损量变化规律.基于离合器油压和转速特性,利用数值拟合的方法建立了摩擦片单次工作磨损量计算模型,通过对离合器摩擦片磨损试验过程的油液进行光谱分析,确定了磨损工况系数,并利用模型讨论了油压和转速对磨损量的影响.通过18000次综合传动换挡试验,得到了离合器磨损量与换挡次数的函数关系.经验证,湿式换挡离合器内齿摩擦片磨损量可以表示为离合器工作油压、滑摩转速和换挡次数的函数.  相似文献   

4.
以某湿式摩擦离合器的摩擦副为研究对象,忽略摩擦片表面沟槽结构及散热,建立摩擦副接触模型,通过ABAQUS仿真分析软件,对模型直接施加转速、压力等条件,进行更接近实际情况的摩擦生热仿真分析,得到摩擦副温度场,对温度场中最高温度出现位置及摩擦副厚度对最高温度的影响进行对比分析,仿真结果表明,理论计算平均温升与仿真结果最高温升存在较大差异;摩擦副最高温度出现在滑摩区域靠近最外圈位置的原因是滑摩过程中钢片及摩擦片沿轴向产生的微小形变;钢片厚度对最高温度影响较大,摩擦片厚度对最高温度影响较小,适当增加钢片厚度能降低最高温度。  相似文献   

5.
在建立湿式离合器摩擦片与钢片间油膜计算模型的基础上,综合考虑湿式离合器润滑油ATF在工作情况下的黏温特性及油膜变化对离合器特性的影响,运用动网格技术定义黏度随温度的变化,以一对摩擦副为模拟研究对象,建立实际油路的有限元模型;并在定常、层流下,运用UDF定义黏度随温度变化特性。运用FLUENT采用动网格计算,然后处理分析ATF润滑油对入口温度对湿式离合器带排转矩的的影响,得到摩擦片表面的压力、速度分布图,根据摩擦片表面的压力分布图来研究摩擦片表面油膜变化规律,得出湿式离合器带排转矩随转速差的增加先成正比增加然后减少,最后在自主研发的离合器综合试验台上试验验证。  相似文献   

6.
摘要:本文在建立湿式离合器摩擦片与钢片间油膜计算模型的基础上,综合考虑湿式离合器润滑油ATF在工作情况下的粘温特性及油膜变化对离合器特性的影响,运用动网格技术定义粘度随温度的变化,以一对摩擦副为模拟研究对象,建立实际油路的有限元模型,并在定常、层流下,运用UDF定义粘度随温度变化特性,运用FLUENT采用动网格计算,然后处理分析ATF润滑油对入口温度对湿式离合器带排转矩的的影响,,得到摩擦片表面的压力、速度分布图,根据摩擦片表面的压力分布图来研究摩擦片表面油膜变化规律,得出湿式离合器带排转矩随转速差的增加先成正比增加然后减少,最后在自主研发的离合器综合试验台上试验验证。  相似文献   

7.
热失效是混合动力汽车湿式离合器发生故障的主要原因之一。摩擦副滑摩过程中具有高度非线性,同时摩擦副温度场受到多个参数影响。为深入研究混合动力汽车离合器摩擦副温度场分布情况,通过搭建混合动力汽车离合器热结构耦合分析模型,对滑摩过程进行仿真计算。在此基础上,深入研究初始转速、接合油压、对偶钢片厚度和摩擦衬片材料等因素对摩擦副温度场的影响。  相似文献   

8.
湿式离合器摩擦元件摩擦温升状态与车辆性能息息相关.首先考虑沟槽冷却、接触面局部散热和摩擦因数实时变化,引入了副间等效对流换热系数和等效增益系数,优化了温度场数值模型.通过有限差分法进行求解,并试验验证了有效性,比原模型具有更高的准确性.在滑摩稳定期,应用滑摩温度场优化模型分析了转速、油压对温度场的影响规律.用试验方法研究了润滑流量对滑摩温升特性的影响规律,并测得了变形失效过程的温升特性变化.   相似文献   

9.
以船用湿式多片摩擦离合器油路为研究对象,利用动网格技术对离合器分片过程的流场进行动态仿真,得出摩擦片间隙处油层厚度的分布情况;基于流体动力润滑理论和牛顿内摩擦定律,建立含径向和周向油槽的湿式多片摩擦离合器带排扭矩数学模型,计算得出离合器带排扭矩解析解;建立摩擦离合器片间润滑油层参数化离散模型,采用有限元法计算得出离合器带排扭矩数值解,而后研究了油槽形式、主动轴转速和润滑油温度对离合器带排扭矩的影响规律.结果表明,两种带排扭矩预测方法的计算结果吻合良好;油槽形式对带排扭矩的影响较大;离合器带排扭矩随主动轴转速的增大而增大,随润滑油温度的增大而减小.  相似文献   

10.
车用高速多片湿式离合器摩擦副的流固耦合运动会引起摩擦片与钢片的轴向碰摩,使其产生较大的带排转矩,降低车辆传动系统工作效率.考虑摩擦副与间隙旋转流场之间的耦合运动关系,建立了摩擦副流固耦合动力学模型.分析了摩擦片与钢片碰摩过程,构建了摩擦副轴向碰摩模型,进而求得带排转矩.通过数值模拟研究了不同转速下的摩擦副非线性运动响应和带排转矩,并与实验结果进行对比.研究结果表明,随离合器转速的增加,在某一临界转速,摩擦副间发生轴向碰摩,摩擦副由稳定运动状态转变为混沌运动状态,此后离合器带排转矩随离合器转速的增加而逐渐增大.  相似文献   

11.
为了研究湿式离合器的接合特性,考虑摩擦副表面温度、相对速度、粗糙度以及载荷对摩擦系数的共同影响,基于流体动力润滑理论、粗糙表面弹性接触理论、吸附热理论以及传热学理论建立了湿式离合器接合过程数学模型。分别讨论了接合压力、摩擦副表面粗糙度、摩擦材料渗透性对接合过程中油膜厚度、相对角速度以及传递转矩的影响规律。结果表明:增大接合压力,转矩响应、相对角速度减小速度以及油膜厚度减小速度都会加快,接合时间缩短,最小油膜厚度减小;减小摩擦副表面粗糙度,转矩响应减慢,但相对角速度减小速度和油膜厚度减小速度都会加快,接合时间缩短,最小油膜厚度减小;增大摩擦材料渗透性,转矩响应和相对角速度减小速度以及油膜厚度减小速度都会加快,接合时间缩短,但最小油膜厚度变化较小。  相似文献   

12.
为求解湿式离合器的多影响因素损伤关系,应用多源数据融合方法,构建一种基于PSO-BP神经网络的湿式摩擦元件损伤预测模型. 将转速和接合油压作为模型的输入参数,将提取到的摩擦片周向温度梯度、Fe和Cu元素浓度变化率、摩擦片表面粗糙度变化率作为模型输出参数, 建立了有限元仿真模型,搭建了湿式离合器摩擦磨损综合试验台,采用控制变量法研究了油压、转速对摩擦元件损伤特征参数的影响. 结果表明,输入工况与4类损伤特征参数呈非线性关系,预测值与实测值随工况变化趋势一致,损伤特征参数较油压的变化更为敏感. 对比同类模型与试验数据,预测模型具有较高的预测精度,能够有效地对湿式离合器多工况损伤进行预测.   相似文献   

13.
喷射润滑高速轴承内部油气两相流动研究   总被引:2,自引:1,他引:1  
郭凯  苑士华  邵子桐 《北京理工大学学报》2012,32(10):1022-1025,1041
针对喷射润滑高速轴承内部产生的油气两相流动状态,基于VOF方法和滑移网格技术建立了油气两相流三维瞬态仿真模型,研究了轴承内部的两相流流场,揭示了润滑油喷入轴承后的油气混合过程,明确了轴承内部的油气比例和分布状态.建立了轴承结构-转速-供油量与轴承内部实际油液体积分数之间的联系,分析结果显示油液体积分数随转速的升高而降低,随供油量的增大而增加,并呈非线性关系,轴承内部油气分布不均匀,为高速滚动轴承的温度场分析提供了更为接近实际的边界条件.  相似文献   

14.
针对机械传动湿式摩擦副热负荷异常导致的元件变形失效问题,基于弹性流体混合润滑理论,增加考虑粗糙界面弹塑性变形带来的影响,建立湿式摩擦副混合润滑热力学模型,并通过摩擦磨损试验机验证其正确性.基于粗糙接触面积、局部压强分布和局部温度分布的仿真结果,分析一定工况下的湿式摩擦副界面状态变化规律,探究接触面压和滑动速率对温度场细观分布的影响.结果表明:随着面压的提升,粗糙接触面积和局部压强逐渐升高,最高温度与平均温度的差距拉大,说明了压力提升可以激化界面承压分配的两极分化;随着滑摩速度的提升,粗糙接触面积和局部压强逐渐下降,界面最高温度先迅速升高后又明显下降,极值出现在0.1 m/s~1.0 m/s区间内.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号