首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The molecular mechanisms that regulate basal or background entry of divalent cations into mammalian cells are poorly understood. Here we describe the cloning and functional characterization of a Ca2+- and Mg2+-permeable divalent cation channel, LTRPC7 (nomenclature compatible with that proposed in ref. 1), a new member of the LTRPC family of putative ion channels. Targeted deletion of LTRPC7 in DT-40 B cells was lethal, indicating that LTRPC7 has a fundamental and nonredundant role in cellular physiology. Electrophysiological analysis of HEK-293 cells overexpressing recombinant LTRPC7 showed large currents regulated by millimolar levels of intracellular Mg.ATP and Mg.GTP with the permeation properties of a voltage-independent divalent cation influx pathway. Analysis of several cultured cell types demonstrated small magnesium-nucleotide-regulated metal ion currents (MagNuM) with regulation and permeation properties essentially identical to the large currents observed in cells expressing recombinant LTRPC7. Our data indicate that LTRPC7, by virtue of its sensitivity to physiological Mg.ATP levels, may be involved in a fundamental process that adjusts plasma membrane divalent cation fluxes according to the metabolic state of the cell.  相似文献   

2.
Hormonal control of Mg2+ transport in the heart   总被引:2,自引:0,他引:2  
A Romani  A Scarpa 《Nature》1990,346(6287):841-844
Magnesium is abundant in the mammalian body and the second most abundant cation in cells. Because the concentration of intracellular free Mg2+ is relatively high (0.2-1 mM), Mg2+ is unlikely to act as a second messenger, like Ca2+, by rapidly changing its cytosolic concentration. But changes in Mg2+ do have profound effects on cellular metabolism, structure and bioenergetics. Key enzymes or metabolic pathways, mitochondrial ion transport, Ca2+ channel activities in the plasma membrane and intracellular organelles, ATP-requiring reactions, and structural properties of cells and nucleic acids are modified by changes in Mg2+ concentration. Yet, although some information is available from giant cells and bacteria, little is known about the regulation of intracellular Mg2+ in mammalian cells. Here we report a new transport mechanism for Mg2+ across the sarcolemma of cardiac cells in both intact hearts and dissociated myocytes. We show that noradrenaline, through beta-adrenergic stimulation and increase of cyclic AMP, stimulates a large efflux of Mg2+ from cardiac cells. This transport is of major dimensions and can move up to 20% of total cellular Mg2+ within a few minutes.  相似文献   

3.
Cell signalling requires efficient Ca2+ mobilization from intracellular stores through Ca2+ release channels, as well as predicted counter-movement of ions across the sarcoplasmic/endoplasmic reticulum membrane to balance the transient negative potential generated by Ca2+ release. Ca2+ release channels were cloned more than 15 years ago, whereas the molecular identity of putative counter-ion channels remains unknown. Here we report two TRIC (trimeric intracellular cation) channel subtypes that are differentially expressed on intracellular stores in animal cell types. TRIC subtypes contain three proposed transmembrane segments, and form homo-trimers with a bullet-like structure. Electrophysiological measurements with purified TRIC preparations identify a monovalent cation-selective channel. In TRIC-knockout mice suffering embryonic cardiac failure, mutant cardiac myocytes show severe dysfunction in intracellular Ca2+ handling. The TRIC-deficient skeletal muscle sarcoplasmic reticulum shows reduced K+ permeability, as well as altered Ca2+ 'spark' signalling and voltage-induced Ca2+ release. Therefore, TRIC channels are likely to act as counter-ion channels that function in synchronization with Ca2+ release from intracellular stores.  相似文献   

4.
A calcium sensor in the sodium channel modulates cardiac excitability.   总被引:11,自引:0,他引:11  
Sodium channels are principal molecular determinants responsible for myocardial conduction and maintenance of the cardiac rhythm. Calcium ions (Ca2+) have a fundamental role in the coupling of cardiac myocyte excitation and contraction, yet mechanisms whereby intracellular Ca2+ may directly modulate Na channel function have yet to be identified. Here we show that calmodulin (CaM), a ubiquitous Ca2+-sensing protein, binds to the carboxy-terminal 'IQ' domain of the human cardiac Na channel (hH1) in a Ca2+-dependent manner. This binding interaction significantly enhances slow inactivation-a channel-gating process linked to life-threatening idiopathic ventricular arrhythmias. Mutations targeted to the IQ domain disrupted CaM binding and eliminated Ca2+/CaM-dependent slow inactivation, whereas the gating effects of Ca2+/CaM were restored by intracellular application of a peptide modelled after the IQ domain. A naturally occurring mutation (A1924T) in the IQ domain altered hH1 function in a manner characteristic of the Brugada arrhythmia syndrome, but at the same time inhibited slow inactivation induced by Ca2+/CaM, yielding a clinically benign (arrhythmia free) phenotype.  相似文献   

5.
Rose CR  Blum R  Pichler B  Lepier A  Kafitz KW  Konnerth A 《Nature》2003,426(6962):74-78
The neurotrophin receptor TrkB is essential for normal function of the mammalian brain. It is expressed in three splice variants. Full-length receptors (TrkB(FL)) possess an intracellular tyrosine kinase domain and are considered as those TrkB receptors that mediate the crucial effects of brain-derived neurotrophic factor (BDNF) or neurotrophin 4/5 (NT-4/5). By contrast, truncated receptors (TrkB-T1 and TrkB-T2) lack tyrosine kinase activity and have not been reported to elicit rapid intracellular signalling. Here we show that astrocytes predominately express TrkB-T1 and respond to brief application of BDNF by releasing calcium from intracellular stores. The calcium transients are insensitive to the tyrosine kinase blocker K-252a and persist in mutant mice lacking TrkB(FL). By contrast, neurons produce rapid BDNF-evoked signals through TrkB(FL) and the Na(v)1.9 channel. Expression of antisense TrkB messenger RNA strongly reduces BDNF-evoked calcium signals in glia. Thus, our results show that, unexpectedly, TrkB-T1 has a direct signalling role in mediating inositol-1,4,5-trisphosphate-dependent calcium release; in addition, they identify a previously unknown mechanism of neurotrophin action in the brain.  相似文献   

6.
Piskorowski R  Aldrich RW 《Nature》2002,420(6915):499-502
In many physiological systems such as neurotransmitter release, smooth muscle relaxation and frequency tuning of auditory hair cells, large-conductance calcium-activated potassium (BK(Ca)) channels create a connection between calcium signalling pathways and membrane excitability. BK(Ca) channels are activated by voltage and by micromolar concentrations of intracellular calcium. Although it is possible to open BK(Ca) channels in the absence of calcium, calcium binding is essential for their activation under physiological conditions. In the presence of intracellular calcium, BK(Ca) channels open at more negative membrane potentials. Many experiments investigating the molecular mechanism of calcium activation of the BK(Ca) channel have focused on the large intracellular carboxy terminus, and much evidence supports the hypothesis that calcium-binding sites are located in this region of the channel. Here we show that BK(Ca) channels that lack the whole intracellular C terminus retain wild-type calcium sensitivity. These results show that the intracellular C terminus, including the 'calcium bowl' and the RCK domain, is not necessary for the calcium-activated opening of these channels.  相似文献   

7.
Polycystin-L is a calcium-regulated cation channel permeable to calcium ions.   总被引:17,自引:0,他引:17  
Polycystic kidney diseases are genetic disorders in which the renal parenchyma is progressively replaced by fluid-filled cysts. Two members of the polycystin family (polycystin-1 and -2) are mutated in autosomal dominant polycystic kidney disease (ADPKD), and polycystin-L is deleted in mice with renal and retinal defects. Polycystins are membrane proteins that share significant sequence homology, especially polycystin-2 and -L (50% identity and 71% similarity). The functions of the polycystins remain unknown. Here we show that polycystin-L is a calcium-modulated nonselective cation channel that is permeable to sodium, potassium and calcium ions. Patch-clamp experiments revealed single-channel activity with a unitary conductance of 137 pS. Channel activity was substantially increased when either the extracellular or intracellular calcium-ion concentration was raised, indicating that polycystin-L may act as a transducer of calcium-mediated signalling in vivo. Its large single-channel conductance and regulation by calcium ions distinguish it from other structurally related cation channels.  相似文献   

8.
Presence of Ti (WT31) negative T lymphocytes in normal blood and thymus   总被引:43,自引:0,他引:43  
L L Lanier  A Weiss 《Nature》1986,324(6094):268-270
The antigen receptor expressed on most T lymphocytes is a disulphide-linked heterodimer (Ti) that is composed of alpha-chain and beta-chain subunits. On the surface of human T lymphocytes, Ti is non-covalently associated with three invariant proteins, designated CD3-gamma, -delta, and -epsilon. It has been suggested that Ti is obligatory for CD3 expression. But a T leukaemia cell line, IL-2 (interleukin 2) dependent T-cell clones established from fetal blood and IL-2 dependent cell lines established from immunodeficiency patients with bare lymphocyte syndrome and ectodermal dysplasia syndrome have recently been shown to express CD3, but not Ti (detected due to monoclonal antibody WT31). These lymphocytes may express the product of the T-cell antigen receptor gamma (TCR-gamma) gene, rather than the alpha/beta heterodimer, in association with CD3. Preliminary studies suggested that T cells expressing CD3 but lacking Ti are present in low frequency in normal lymphoid tissues. Here we show that in normal blood and thymus CD3+, WT31-T cells express neither CD4 nor CD8. The low frequency (less than 0.2-0.9% of total thymocytes) of CD3+, WT31- cells in the thymus suggests that this population does not represent a major stage of thymic development and may be a distinct lineage of T cells.  相似文献   

9.
Signal transduction through Toll-like receptors (TLRs) originates from their intracellular Toll/interleukin-1 receptor (TIR) domain, which binds to MyD88, a common adaptor protein containing a TIR domain. Although cytokine production is completely abolished in MyD88-deficient mice, some responses to lipopolysaccharide (LPS), including the induction of interferon-inducible genes and the maturation of dendritic cells, are still observed. Another adaptor, TIRAP (also known as Mal), has been cloned as a molecule that specifically associates with TLR4 and thus may be responsible for the MyD88-independent response. Here we report that LPS-induced splenocyte proliferation and cytokine production are abolished in mice lacking TIRAP. As in MyD88-deficient mice, LPS activation of the nuclear factor NF-kappaB and mitogen-activated protein kinases is induced with delayed kinetics in TIRAP-deficient mice. Expression of interferon-inducible genes and the maturation of dendritic cells is observed in these mice; they also show defective response to TLR2 ligands, but not to stimuli that activate TLR3, TLR7 or TLR9. In contrast to previous suggestions, our results show that TIRAP is not specific to TLR4 signalling and does not participate in the MyD88-independent pathway. Instead, TIRAP has a crucial role in the MyD88-dependent signalling pathway shared by TLR2 and TLR4.  相似文献   

10.
Stage-specific control of neuronal migration by somatostatin.   总被引:8,自引:0,他引:8  
Elina Yacubova  Hitoshi Komuro 《Nature》2002,415(6867):77-81
Developing neurons transiently express somatostatin and its receptors, but little is known about their function at these early stages. As we thought that endogenous somatostatin might control the migratory behaviour of immature neurons, we have examined the effects of somatostatin in cerebellar granule cells of early postnatal mice, because these cells express all five types of somatostatin receptors before the initiation of their migration. Here we show that somatostatin has opposite and stage-specific effects on the migration of cerebellar granule cells. Activation of somatostatin receptors increases the rate of granule cell migration near their birthplace, but decreases the rate near their final destination. Furthermore, somatostatin enhances the size and frequency of spontaneous Ca2+ fluctuations in the early phase of migration, whereas it eliminates spike-like Ca2+ transients in the late phase. Somatostatin-induced changes at both early and late phases are reversed by a blockade of K+ channel activity. These results indicate that somatostatin may provide an essential cue for accelerating the movement of granule cells in the early phase and for terminating the movement in the late phase through altering intracellular Ca2+ concentrations and K+ channel activity.  相似文献   

11.
12.
Van Petegem F  Clark KA  Chatelain FC  Minor DL 《Nature》2004,429(6992):671-675
Voltage-gated calcium channels (Ca(V)s) govern muscle contraction, hormone and neurotransmitter release, neuronal migration, activation of calcium-dependent signalling cascades, and synaptic input integration. An essential Ca(V) intracellular protein, the beta-subunit (Ca(V)beta), binds a conserved domain (the alpha-interaction domain, AID) between transmembrane domains I and II of the pore-forming alpha(1) subunit and profoundly affects multiple channel properties such as voltage-dependent activation, inactivation rates, G-protein modulation, drug sensitivity and cell surface expression. Here, we report the high-resolution crystal structures of the Ca(V)beta2a conserved core, alone and in complex with the AID. Previous work suggested that a conserved region, the beta-interaction domain (BID), formed the AID-binding site; however, this region is largely buried in the Ca(V)beta core and is unavailable for protein-protein interactions. The structure of the AID-Ca(V)beta2a complex shows instead that Ca(V)beta2a engages the AID through an extensive, conserved hydrophobic cleft (named the alpha-binding pocket, ABP). The ABP-AID interaction positions one end of the Ca(V)beta near the intracellular end of a pore-lining segment, called IS6, that has a critical role in Ca(V) inactivation. Together, these data suggest that Ca(V)betas influence Ca(V) gating by direct modulation of IS6 movement within the channel pore.  相似文献   

13.
Zagotta WN  Olivier NB  Black KD  Young EC  Olson R  Gouaux E 《Nature》2003,425(6954):200-205
The family of hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channels are crucial for a range of electrical signalling, including cardiac and neuronal pacemaker activity, setting resting membrane electrical properties and dendritic integration. These nonselective cation channels, underlying the I(f), I(h) and I(q) currents of heart and nerve cells, are activated by membrane hyperpolarization and modulated by the binding of cyclic nucleotides such as cAMP and cGMP. The cAMP-mediated enhancement of channel activity is largely responsible for the increase in heart rate caused by beta-adrenergic agonists. Here we have investigated the mechanism underlying this modulation by studying a carboxy-terminal fragment of HCN2 containing the cyclic nucleotide-binding domain (CNBD) and the C-linker region that connects the CNBD to the pore. X-ray crystallographic structures of this C-terminal fragment bound to cAMP or cGMP, together with equilibrium sedimentation analysis, identify a tetramerization domain and the mechanism for cyclic nucleotide specificity, and suggest a model for ligand-dependent channel modulation. On the basis of amino acid sequence similarity to HCN channels, the cyclic nucleotide-gated, and eag- and KAT1-related families of channels are probably related to HCN channels in structure and mechanism.  相似文献   

14.
A Lückhoff  D E Clapham 《Nature》1992,355(6358):356-358
Receptor-mediated increases in the cytosolic free calcium ion concentration in most mammalian cells result from mobilization of Ca2+ from intracellular stores as well as transmembrane Ca2+ influx. Inositol 1,4,5-trisphosphate (InsP3) releases calcium from intracellular stores by opening a Ca(2+)-permeable channel in the endoplasmic reticulum. But the mechanism and regulation of Ca2+ entry into nonexcitable cells has remained elusive because the entry pathway has not been defined. Here we characterize a novel inositol 1,3,4,5-tetrakisphosphate (InsP4) and Ca(2+)-sensitive Ca(2+)-permeable channel in endothelial cells. We find that InsP4, which induces Ca2+ influx into acinar cells, enhances the activity of the Ca(2+)-permeable channel when exposed to the intracellular surface of endothelial cell inside-out patches. Our results suggest a molecular mechanism which is likely to be important for receptor-mediated Ca2+ entry.  相似文献   

15.
Rapid gating and anion permeability of an intracellular aquaporin   总被引:25,自引:0,他引:25  
Yasui M  Hazama A  Kwon TH  Nielsen S  Guggino WB  Agre P 《Nature》1999,402(6758):184-187
Aquaporin (AQP) water-channel proteins are freely permeated by water but not by ions or charged solutes. Although mammalian aquaporins were believed to be located in plasma membranes, rat AQP6 is restricted to intracellular vesicles in renal epithelia. Here we show that AQP6 is functionally distinct from other known aquaporins. When expressed in Xenopus laevis oocytes, AQP6 exhibits low basal water permeability; however, when treated with the known water channel inhibitor, Hg2+, the water permeability of AQP6 oocytes rapidly rises up to tenfold and is accompanied by ion conductance. AQP6 colocalizes with H+-ATPase in intracellular vesicles of acid-secreting alpha-intercalated cells in renal collecting duct. At pH less than 5.5, anion conductance is rapidly and reversibly activated in AQP6 oocytes. Site-directed mutation of lysine to glutamate at position 72 in the cytoplasmic mouth of the pore changes the cation/anion selectivity, but leaves low pH activation intact. Our results demonstrate unusual biophysical properties of an aquaporin, and indicate that anion-channel function may now be explored in a protein with known structure.  相似文献   

16.
Yue L  Peng JB  Hediger MA  Clapham DE 《Nature》2001,410(6829):705-709
The calcium-release-activated Ca2+channel, ICRAC, is a highly Ca2+-selective ion channel that is activated on depletion of either intracellular Ca2+ levels or intracellular Ca2+ stores. The unique gating of ICRAC has made it a favourite target of investigation for new signal transduction mechanisms; however, without molecular identification of the channel protein, such studies have been inconclusive. Here we show that the protein CaT1 (ref. 4), which has six membrane-spanning domains, exhibits the unique biophysical properties of ICRAC when expressed in mammalian cells. Like ICRAC, expressed CaT1 protein is Ca2+ selective, activated by a reduction in intracellular Ca2+ concentration, and inactivated by higher intracellular concentrations of Ca2+. The channel is indistinguishable from ICRAC in the following features: sequence of selectivity to divalent cations; an anomalous mole fraction effect; whole-cell current kinetics; block by lanthanum; loss of selectivity in the absence of divalent cations; and single-channel conductance to Na+ in divalent-ion-free conditions. CaT1 is activated by both passive and active depletion of calcium stores. We propose that CaT1 comprises all or part of the ICRAC pore.  相似文献   

17.
Watanabe H  Vriens J  Prenen J  Droogmans G  Voets T  Nilius B 《Nature》2003,424(6947):434-438
TRPV4 is a widely expressed cation channel of the 'transient receptor potential' (TRP) family that is related to the vanilloid receptor VR1 (TRPV1). It functions as a Ca2+ entry channel and displays remarkable gating promiscuity by responding to both physical stimuli (cell swelling, innoxious heat) and the synthetic ligand 4alphaPDD. An endogenous ligand for this channel has not yet been identified. Here we show that the endocannabinoid anandamide and its metabolite arachidonic acid activate TRPV4 in an indirect way involving the cytochrome P450 epoxygenase-dependent formation of epoxyeicosatrienoic acids. Application of 5',6'-epoxyeicosatrienoic acid at submicromolar concentrations activates TRPV4 in a membrane-delimited manner and causes Ca2+ influx through TRPV4-like channels in vascular endothelial cells. Activation of TRPV4 in vascular endothelial cells might therefore contribute to the relaxant effects of endocannabinoids and their P450 epoxygenase-dependent metabolites on vascular tone.  相似文献   

18.
Cytosolic free calcium ([Ca2+]cyt) is a ubiquitous signalling component in plant cells. Numerous stimuli trigger sustained or transient elevations of [Ca2+]cyt that evoke downstream stimulus-specific responses. Generation of [Ca2+]cyt signals is effected through stimulus-induced opening of Ca2+-permeable ion channels that catalyse a flux of Ca2+ into the cytosol from extracellular or intracellular stores. Many classes of Ca2+ current have been characterized electrophysiologically in plant membranes. However, the identity of the ion channels that underlie these currents has until now remained obscure. Here we show that the TPC1 ('two-pore channel 1') gene of Arabidopsis thaliana encodes a class of Ca2+-dependent Ca2+-release channel that is known from numerous electrophysiological studies as the slow vacuolar channel. Slow vacuolar channels are ubiquitous in plant vacuoles, where they form the dominant conductance at micromolar [Ca2+]cyt. We show that a tpc1 knockout mutant lacks functional slow vacuolar channel activity and is defective in both abscisic acid-induced repression of germination and in the response of stomata to extracellular calcium. These studies unequivocally demonstrate a critical role of intracellular Ca2+-release channels in the physiological processes of plants.  相似文献   

19.
A chloride channel widely expressed in epithelial and non-epithelial cells.   总被引:46,自引:0,他引:46  
A Thiemann  S Gründer  M Pusch  T J Jentsch 《Nature》1992,356(6364):57-60
Chloride channels have several functions, including the regulation of cell volume, stabilizing membrane potential, signal transduction and transepithelial transport. The plasma membrane Cl- channels already cloned belong to different structural classes: ligand-gated channels, voltage-gated channels, and possibly transporters of the ATP-binding-cassette type (if the cystic fibrosis transmembrane regulator is a Cl- channel). The importance of chloride channels is illustrated by the phenotypes that can result from their malfunction: cystic fibrosis, in which transepithelial transport is impaired, and myotonia, in which ClC-1, the principal skeletal muscle Cl- channel, is defective. Here we report the properties of ClC-2, a new member of the voltage-gated Cl- channel family. Its sequence is approximately 50% identical to either the Torpedo electroplax Cl- channel, ClC-0 (ref. 8), or the rat muscle Cl- channel, ClC-1 (ref. 9). Isolated initially from rat heart and brain, it is also expressed in pancreas, lung and liver, for example, and in pure cell lines of fibroblastic, neuronal, and epithelial origin, including tissues and cells affected by cystic fibrosis. Expression in Xenopus oocytes induces Cl- currents that activate slowly upon hyperpolarization and display a linear instantaneous current-voltage relationship. The conductivity sequence is Cl- greater than or equal to Br- greater than I-. The presence of ClC-2 in such different cell types contrasts with the highly specialized expression of ClC-1 (ref. 9) and also with the cloned cation channels, and suggests that its function is important for most cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号