首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S Rotzler  H Schramek  H R Brenner 《Nature》1991,349(6307):337-339
During formation of the neuromuscular junction, acetylcholine receptors in the endplate membrane become metabolically stabilized under neural control, their half-life increasing from about 1 day to about 10 days. The metabolic stability of the receptors is regulated by the electrical activity induced in the muscle by innervation. We report here that metabolic stabilization of endplate receptors but not of extrajunctional receptors can be induced in the absence of muscle activity if muscles are treated with the calcium ionophore A23187. Acetylcholine receptor stabilization was also induced by culturing non-stimulated muscle in elevated K+ with the Ca2+ channel activator (+)-SDZ202-791. Conversely, activity-dependent receptor stabilization is prevented in muscle stimulated in the presence of the Ca2+ channel blockers (+)-PN200-110 or D-600. Treatment of muscles with ryanodine, which induces Ca2+ release from the sarcoplasmic reticulum in the absence of activity, does not cause stabilization of junctional receptors. Evidently, muscle activity induces metabolic acetylcholine receptor stabilization by way of an influx of Ca2+ ions through dihydropyridine-sensitive Ca2+ channels in the endplate membrane, whereas Ca2+ released from the sarcoplasmic reticulum is ineffective in this developmental process.  相似文献   

2.
Cell signalling requires efficient Ca2+ mobilization from intracellular stores through Ca2+ release channels, as well as predicted counter-movement of ions across the sarcoplasmic/endoplasmic reticulum membrane to balance the transient negative potential generated by Ca2+ release. Ca2+ release channels were cloned more than 15 years ago, whereas the molecular identity of putative counter-ion channels remains unknown. Here we report two TRIC (trimeric intracellular cation) channel subtypes that are differentially expressed on intracellular stores in animal cell types. TRIC subtypes contain three proposed transmembrane segments, and form homo-trimers with a bullet-like structure. Electrophysiological measurements with purified TRIC preparations identify a monovalent cation-selective channel. In TRIC-knockout mice suffering embryonic cardiac failure, mutant cardiac myocytes show severe dysfunction in intracellular Ca2+ handling. The TRIC-deficient skeletal muscle sarcoplasmic reticulum shows reduced K+ permeability, as well as altered Ca2+ 'spark' signalling and voltage-induced Ca2+ release. Therefore, TRIC channels are likely to act as counter-ion channels that function in synchronization with Ca2+ release from intracellular stores.  相似文献   

3.
E Mueller  C van Breemen 《Nature》1979,281(5733):682-683
Various mechanisms have been proposed for beta-adrenergically mediated relaxation of smooth muscle. All theories suggest the involvement of cyclic AMP as a second messenger: beta-agonists stimulate adenylate cyclase which converts ATP to cyclic AMP and protein kinase, activated by cyclic AMP, is then thought to catalyse a protein phosphorylation that leads to a reduction in free Ca2+, thus effecting relaxation. How this last step is accomplished is much debated, but the following possibilities are currently considered as the mechanisms responsible for cyclic AMP-induced reduction of cytoplasmic Ca2+: activation of a Ca2+-ATPase in the plasma and/or sarcoplasmic reticulum membranes which lowers cytoplasmic [Ca2+] in a direct manner or stimulation of (Na+-K+)ATPase in the cell membrane which may indirectly effect Ca2+ extrusion. Among the hypotheses suggested, those of Ca2+ sequestration by the sarcoplasmic reticulum and of Ca2+ extrusion across the cell membrane are consistent with each other if it is assumed that both processes are effected by a cyclic AMP-sensitive Ca2+-ATPase. However, quite a different mechanism is implied by involving the Na+-K+ pump and Na+-Ca2+ exchange carrier. In this report, we present evidence that suggests intracellular Ca2+ sequestration is the mechanism involved.  相似文献   

4.
J Vilven  R Coronado 《Nature》1988,336(6199):587-589
In many non-muscle cells, D-inositol 1,4,5-trisphosphate (InsP3) has been shown to release Ca2+ from intracellular stores, presumably from the endoplasmic reticulum. It is thought to be a ubiquitous second messenger that is produced in, and released from, the plasma membrane in response to extracellular receptor stimulation. By analogy, InsP3 in muscle cells has been postulated to open calcium channels in the sarcoplasmic reticulum (SR) membrane, which is the intracellular Ca2+ store that releases Ca2+ during muscle contraction. We report here that InsP3 may have a second site of action. We show that InsP3 opens dihydropyridine-sensitive Ca2+ channels in a vesicular preparation of rabbit skeletal muscle transverse tubules. InsP3-activated channels and channels activated by a dihydropyridine agonist in the same preparation have similar slope conductance and extrapolated reversal potential and are blocked by a dihydropyridine antagonist. This suggests that in skeletal muscle, InsP3 can modulate Ca2+ channels of transverse tubules from plasma membrane, in contrast to the previous suggestion that the functional locus of InsP3 is exclusively in the sarcoplasmic reticulum membrane.  相似文献   

5.
A Fabiato  F Fabiato 《Nature》1979,281(5727):146-148
It has been proposed that the trans-sarcolemmal influx of Ca2+ occurring during the plateau of the mammalian cardiac action potentials is insufficient in itself to activate the myofilaments, but can trigger a release of Ca2+ from the sarcoplasmic reticulum (SR) which is sufficient for activation. The demonstration of this Ca2+-induced release of Ca2+ relied entirely on experiments in which the tension developed by the myofilaments was used as a sensor of the changes of myoplasmic free Ca2+ concentration ([free Ca2+]) in segments of single cardiac cells from which the sarcolemma had been removed by microdissection (skinned cardiac cells). The small size of these preparations has previously prevented the use of more direct methods for the detection of myoplasmic Ca2+ movements. The present study is a direct demonstration of Ca2+-induced release of Ca2+ from the SR of skinned cardiac cells treated with chlorotetracycline (CTC), a fluorescent chelate probe which enables changes in the amount of Ca2+ bound to a variety of biological membranes or micelles to be monitored. The fluorescence increases when more Ca2+ is bound.  相似文献   

6.
D L Gill  T Ueda  S H Chueh  M W Noel 《Nature》1986,320(6061):461-464
Ca2+ accumulation and release from intracellular organelles is important for Ca2+-signalling events within cells. In a variety of cell types, the active Ca2+-pumping properties of endoplasmic reticulum (ER) have been directly studied using chemically permeabilized cells. The same preparations have been extensively used to study Ca2+ release from ER, in particular, release mediated by the intracellular messenger inositol 1,4,5-trisphosphate (InsP3). So far, these studies and others using microsomal membrane fractions have revealed few mechanistic details of Ca2+ release from ER, although a recent report indicated that InsP3-mediated Ca2+ release from liver microsomes may be dependent on GTP. In contrast to the latter report, we describe here the direct activation of a specific and sensitive guanine nucleotide regulatory mechanism mediating a substantial release of Ca2+ from the ER of cells of the neuronal cell line N1E-115. These data indicate the operation of a major new Ca2+ gating mechanism in ER which is specifically activated by GTP, deactivated by GDP, and which appears to involve a GTP hydrolytic cycle.  相似文献   

7.
Oscillations of intracellular Ca2+ in mammalian cardiac muscle   总被引:2,自引:0,他引:2  
C H Orchard  D A Eisner  D G Allen 《Nature》1983,304(5928):735-738
Contraction of cardiac muscle depends on a transient rise of intracellular calcium concentration ([Ca2+]i) which is initiated by the action potential. It has, however, also been suggested that [Ca2+]i can fluctuate in the absence of changes in membrane potential. The evidence for this is indirect and comes from observations of (1) fluctuations of contractile force in intact cells, (2) spontaneous cellular movements, and (3) spontaneous contractions in cells which have been skinned to remove the surface membrane. The fluctuations in force are particularly prominent when the cell is Ca2+-loaded, and have been attributed to a Ca2+-induced Ca2+ release from the sarcoplasmic reticulum. In these conditions of Ca2+-loading the normal cardiac contraction is followed by an aftercontraction which has been attributed to the synchronization of the fluctuations. The rise of [Ca2+]i which is thought to underlie the aftercontraction also produces a transient inward current. This current, which probably results from a Ca2+-activated nonspecific cation conductance, has been implicated in the genesis of various cardiac arrhythmias. However, despite the potential importance of such fluctuations of [Ca2+]i their existence has, so far, only been inferred from tension measurements. Here we present direct measurements of such oscillations of [Ca2+]i.  相似文献   

8.
In many cell types, receptor activation of phosphoinositidase C results in an initial release of intracellular Ca2+ stores followed by sustained Ca2+ entry across the plasma membrane. Inositol 1,4,5-trisphosphate is the mediator of the initial Ca2+ release, although its role in the mechanism underlying Ca2+ entry remains controversial. We have now used two techniques to introduce inositol phosphates into mouse lacrimal acinar cells and measure their effects on Ca2+ entry: microinjection into cells loaded with Fura-2, a fluorescent dye which allows the measurement of intracellular free calcium concentration by microspectrofluorimetry, and perfusion of patch clamp pipettes in the whole-cell configuration while monitoring the activity of Ca(2+)-activated K+ channels as an indicator of intracellular Ca2+. We report here that inositol 1,4,5-trisphosphate serves as a signal that is both necessary and sufficient for receptor activation of Ca2+ entry across the plasma membrane in these cells.  相似文献   

9.
P James  M Inui  M Tada  M Chiesi  E Carafoli 《Nature》1989,342(6245):90-92
The rapid removal of Ca2+ ions from the cytosol, necessary for the efficient relaxation of cardiac muscle cells, is performed by the Ca2+-pumping ATPase of the sarcoplasmic reticulum. The calcium pump is activated by cyclic AMP- and calmodulin-dependent phosphorylation of phospholamban, an integral membrane protein of the sarcoplasmic reticulum. Using a heterobifunctional crosslinking agent which can be cleaved and photoactivated, we provide evidence for a direct interaction between the two proteins. Only the non-phosphorylated form of phospholamban interacts with the ATPase, demonstrating that phospholamban is an endogenous inhibitor that is removed from the ATPase by phosphorylation. Non-phosphorylated phospholamban interacts only with the calcium-free conformation of the ATPase and is released when it is converted to the calcium-bound state. We localized the site of interaction to a single peptide isolated after cyanogen bromide cleavage of the ATPase. The peptide derives from a domain just C-terminal to the aspartyl phosphate of the active site. This domain is unique to ATPases of the sarcoplasmic reticulum in that it has no homology with any other phosphorylation-type ion pump. The domain occurs in both slow- and fast-twitch isoforms of the ATPase, even though phospholamban is not expressed in fast-twitch muscles.  相似文献   

10.
As the sole Ca2+ entry mechanism in a variety of non-excitable cells, store-operated calcium (SOC) influx is important in Ca2+ signalling and many other cellular processes. A calcium-release-activated calcium (CRAC) channel in T lymphocytes is the best-characterized SOC influx channel and is essential to the immune response, sustained activity of CRAC channels being required for gene expression and proliferation. The molecular identity and the gating mechanism of SOC and CRAC channels have remained elusive. Previously we identified Stim and the mammalian homologue STIM1 as essential components of CRAC channel activation in Drosophila S2 cells and human T lymphocytes. Here we show that the expression of EF-hand mutants of Stim or STIM1 activates CRAC channels constitutively without changing Ca2+ store content. By immunofluorescence, EM localization and surface biotinylation we show that STIM1 migrates from endoplasmic-reticulum-like sites to the plasma membrane upon depletion of the Ca2+ store. We propose that STIM1 functions as the missing link between Ca2+ store depletion and SOC influx, serving as a Ca2+ sensor that translocates upon store depletion to the plasma membrane to activate CRAC channels.  相似文献   

11.
Cancela JM  Churchill GC  Galione A 《Nature》1999,398(6722):74-76
Many hormones and neurotransmitters evoke Ca2+ release from intracellular stores, often triggering agonist-specific signatures of intracellular Ca2+ concentration. Inositol trisphosphate (InsP3) and cyclic adenosine 5'-diphosphate-ribose (cADPR) are established Ca2+-mobilizing messengers that activate Ca2+ release through intracellular InsP3 and ryanodine receptors, respectively. However, in pancreatic acinar cells, neither messenger can explain the complex pattern of Ca2+ signals triggered by the secretory hormone cholecystokinin (CCK). We show here that the Ca2+-mobilizing molecule nicotinic acid adenine dinucleotide phosphate (NAADP), an endogenous metabolite of beta-NADP, triggers a Ca2+ response that varies from short-lasting Ca2+ spikes to a complex mixture of short-lasting (1-2s) and long-lasting (0.2-1 min) Ca2+ spikes. Cells were significantly more sensitive to NAADP than to either cADPR or InsP3, whereas higher concentrations of NAADP selectively inactivated CCK-evoked Ca2+ signals in pancreatic acinar cells, indicating that NAADP may function as an intracellular messenger in mammalian cells.  相似文献   

12.
Oestrogen protects FKBP12.6 null mice from cardiac hypertrophy   总被引:1,自引:0,他引:1  
FK506 binding proteins 12 and 12.6 (FKBP12 and FKBP12.6) are intracellular receptors for the immunosuppressant drug FK506 (ref. 1). The skeletal muscle ryanodine receptor (RyR1) is isolated as a hetero-oligomer with FKBP12 (ref. 2), whereas the cardiac ryanodine receptor (RyR2) more selectively associates with FKBP12.6 (refs 3, 4, 5). FKBP12 modulates Ca2+ release from the sarcoplasmic reticulum in skeletal muscle and developmental cardiac defects have been reported in FKBP12-deficient mice, but the role of FKBP12.6 in cardiac excitation-contraction coupling remains unclear. Here we show that disruption of the FKBP12.6 gene in mice results in cardiac hypertrophy in male mice, but not in females. Female hearts are normal, despite the fact that male and female knockout mice display similar dysregulation of Ca2+ release, seen as increases in the amplitude and duration of Ca2+ sparks and calcium-induced calcium release gain. Female FKBP12.6-null mice treated with tamoxifen, an oestrogen receptor antagonist, develop cardiac hypertrophy similar to that of male mice. We conclude that FKBP12.6 modulates cardiac excitation-contraction coupling and that oestrogen plays a protective role in the hypertrophic response of the heart to Ca2+ dysregulation.  相似文献   

13.
Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis   总被引:1,自引:0,他引:1  
Synapses are specialized intercellular junctions in which cell adhesion molecules connect the presynaptic machinery for neurotransmitter release to the postsynaptic machinery for receptor signalling. Neurotransmitter release requires the presynaptic co-assembly of Ca2+ channels with the secretory apparatus, but little is known about how synaptic components are organized. Alpha-neurexins, a family of >1,000 presynaptic cell-surface proteins encoded by three genes, link the pre- and postsynaptic compartments of synapses by binding extracellularly to postsynaptic cell adhesion molecules and intracellularly to presynaptic PDZ domain proteins. Using triple-knockout mice, we show that alpha-neurexins are not required for synapse formation, but are essential for Ca2+-triggered neurotransmitter release. Neurotransmitter release is impaired because synaptic Ca2+ channel function is markedly reduced, although the number of cell-surface Ca2+ channels appears normal. These data suggest that alpha-neurexins organize presynaptic terminals by functionally coupling Ca2+ channels to the presynaptic machinery.  相似文献   

14.
Caffeine induces a transient inward current in cultured cardiac cells   总被引:8,自引:0,他引:8  
W T Clusin 《Nature》1983,301(5897):248-250
Electrical excitation of cardiac muscle may sometimes be due to initiation of inward current by the presence of Ca2+ ions at the inner surface of the cell membrane. During digitalis toxicity and other conditions that abnormally augment cellular Ca2+ stores, premature release of Ca2+ from the sarcoplasmic reticulum leads to a transient inward current, which is large enough to initiate premature beats and is accompanied by a transient contractile response. This inward current may be mediated either by electrogenic sodium-calcium exchange or by specific Ca2+-activated cation channels that have recently been characterized in tissue cultures of cardiac myocytes. An obvious question raised by these observations is whether release of the sequestered Ca2+ stores during each normal beat exerts a similar influence on membrane potential. To explore this, chick embryonic myocardial cell aggregates were voltage-clamped during abrupt exposure to caffeine, which is known to release Ca2+ from the sarcoplasmic reticulum. The speed of the perfusion system and the relative absence of diffusion barriers in the tissue-cultured cells allowed the effects of caffeine-induced Ca2+ release to be studied on a time scale comparable to that of a single normal beat. We report here that abrupt exposure of the cells to caffeine produced a transient inward current having similar features to that of digitalis toxicity, and which was both large enough and rapid enough to potentially contribute to the action potential.  相似文献   

15.
Subcellular localization of nitric oxide (NO) synthases with effector molecules is an important regulatory mechanism for NO signalling. In the heart, NO inhibits L-type Ca2+ channels but stimulates sarcoplasmic reticulum (SR) Ca2+ release, leading to variable effects on myocardial contractility. Here we show that spatial confinement of specific NO synthase isoforms regulates this process. Endothelial NO synthase (NOS3) localizes to caveolae, where compartmentalization with beta-adrenergic receptors and L-type Ca2+ channels allows NO to inhibit beta-adrenergic-induced inotropy. Neuronal NO synthase (NOS1), however, is targeted to cardiac SR. NO stimulation of SR Ca2+ release via the ryanodine receptor (RyR) in vitro, suggests that NOS1 has an opposite, facilitative effect on contractility. We demonstrate that NOS1-deficient mice have suppressed inotropic response, whereas NOS3-deficient mice have enhanced contractility, owing to corresponding changes in SR Ca2+ release. Both NOS1-/- and NOS3-/- mice develop age-related hypertrophy, although only NOS3-/- mice are hypertensive. NOS1/3-/- double knockout mice have suppressed beta-adrenergic responses and an additive phenotype of marked ventricular remodelling. Thus, NOS1 and NOS3 mediate independent, and in some cases opposite, effects on cardiac structure and function.  相似文献   

16.
C Han  P W Abel  K P Minneman 《Nature》1987,329(6137):333-335
Receptor-mediated increases in intracellular Ca2+ levels can be caused by release from intracellular organelles and/or influx from the extracellular fluid. Noradrenaline (NA) released from sympathetic nerves acts on alpha 1-adrenoceptors to increase cytosolic Ca2+ and promote smooth muscle contraction. In many cells activation of alpha 1-adrenoceptors causes formation of inositol 1,4,5-trisphosphate which promotes Ca2+ release from intracellular stores. The mechanism by which receptor activation opens cell surface Ca2+ channels is not known, although in some cases it may be secondary to formation of inositol phosphates or release of stored intracellular Ca2+ (ref. 3). However, alpha 1-adrenoceptors have recently been shown to have different pharmacological properties in different tissues, and it has been proposed that different alpha 1-adrenoceptor subtypes may control mobilization of intracellular Ca2+ and gating of extracellular Ca2+ influx. We here report evidence for two subtypes of alpha 1-adrenoceptors which cause contractile responses through different molecular mechanisms. One subtype stimulates inositol phosphate (InsP) formation and causes contractions which are independent of extracellular Ca2+, and the other does not stimulate inositol phosphate formation and causes contractions which require the influx of extracellular Ca2+ through dihydropyridine-sensitive channels. These results suggest that neurotransmitters and hormones may control Ca2+ release from intracellular stores and influx through voltage-gated membrane channels through distinct receptor subtypes.  相似文献   

17.
Non-uniform Ca2+ buffer distribution in a nerve cell body   总被引:4,自引:0,他引:4  
D Tillotson  A L Gorman 《Nature》1980,286(5775):816-817
In nerve cells, Ca2+ influx through voltage-dependent channels in the membrane causes a transient rise in the intracellular, free Ca2+ concentration. Such changes have been shown to be important for the release of transmitter at the axon terminal and for the control of the movement of ions through channels in the soma membrane. The transient behaviour of the rise in Ca2+ concentration can, in part, be explained by the presence of sequestering systems in the cell which tend to limit the magnitude and duration of changes in internal Ca2+ (refs 7--10). It is possible that systems involved in buffering changes in internal Ca2+ are not distributed uniformly throughout the cell. This is particularly likely in the cell body, where a significant portion of the cytoplasm is occupied by the nucleus, whose buffering capacity may differ from that of other cellular regions. We report here that in the soma of a molluscan pacemaker neurone, the machinery responsible for short-term buffering of Ca2+ ions is localized near the inner surface of the plasma membrane.  相似文献   

18.
Y Maruyama  D V Gallacher  O H Petersen 《Nature》1983,302(5911):827-829
Nervous or hormonal stimulation of many exocrine glands evokes release of cellular K+ (ref. 1), as originally demonstrated in mammalian salivary glands2,3, and is associated with a marked increase in membrane conductance1,4,5. We now demonstrate directly, by using the patch-clamp technique6, the existence of a K+ channel with a large conductance localized in the baso-lateral plasma membranes of mouse and rat salivary gland acinar cells. The K+ channel has a conductance of approximately 250 pS in the presence of high K+ solutions on both sides of the membrane. Although mammalian exocrine glands are believed not to possess voltage-activated channels1,7, the probability of opening the salivary gland K+ channel was increased by membrane depolarization. The frequency of channel opening, particularly at higher membrane potentials, was increased markedly by elevating the internal ionized Ca2+ concentration, as previously shown for high-conductance K+ channels from cells of neural origin8-10. The Ca2+ and voltage-activated K+ channel explains the marked cellular K+ release that is characteristically observed when salivary glands are stimulated to secrete.  相似文献   

19.
F A Lai  H P Erickson  E Rousseau  Q Y Liu  G Meissner 《Nature》1988,331(6154):315-319
The calcium release channel from rabbit muscle sarcoplasmic reticulum (SR) has been purified and reconstituted as a functional unit in lipid bilayers. Electron microscopy reveals the four-leaf clover structure previously described for the 'feet' that span the transverse tubule (T)-SR junction. Ca2+ release from the SR induced by T-system depolarization during excitation-contraction coupling in muscle may thus be effected through a direct association of the T-system with SR Ca2+-release channels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号