首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammalian cells have three ATP-dependent DNA ligases, which are required for DNA replication and repair. Homologues of ligase I (Lig1) and ligase IV (Lig4) are ubiquitous in Eukarya, whereas ligase III (Lig3), which has nuclear and mitochondrial forms, appears to be restricted to vertebrates. Lig3 is implicated in various DNA repair pathways with its partner protein Xrcc1 (ref. 1). Deletion of Lig3 results in early embryonic lethality in mice, as well as apparent cellular lethality, which has precluded definitive characterization of Lig3 function. Here we used pre-emptive complementation to determine the viability requirement for Lig3 in mammalian cells and its requirement in DNA repair. Various forms of Lig3 were introduced stably into mouse embryonic stem (mES) cells containing a conditional allele of Lig3 that could be deleted with Cre recombinase. With this approach, we find that the mitochondrial, but not nuclear, Lig3 is required for cellular viability. Although the catalytic function of Lig3 is required, the zinc finger (ZnF) and BRCA1 carboxy (C)-terminal-related (BRCT) domains of Lig3 are not. Remarkably, the viability requirement for Lig3 can be circumvented by targeting Lig1 to the mitochondria or expressing Chlorella virus DNA ligase, the minimal eukaryal nick-sealing enzyme, or Escherichia coli LigA, an NAD(+)-dependent ligase. Lig3-null cells are not sensitive to several DNA-damaging agents that sensitize Xrcc1-deficient cells. Our results establish a role for Lig3 in mitochondria, but distinguish it from its interacting protein Xrcc1.  相似文献   

2.
Accumulation of DNA damage leading to adult stem cell exhaustion has been proposed to be a principal mechanism of ageing. Here we address this question by taking advantage of the highly specific role of DNA ligase IV in the repair of DNA double-strand breaks by non-homologous end-joining, and by the discovery of a unique mouse strain with a hypomorphic Lig4(Y288C) mutation. The Lig4(Y288C) mouse, identified by means of a mutagenesis screening programme, is a mouse model for human LIG4 syndrome, showing immunodeficiency and growth retardation. Diminished DNA double-strand break repair in the Lig4(Y288C) strain causes a progressive loss of haematopoietic stem cells and bone marrow cellularity during ageing, and severely impairs stem cell function in tissue culture and transplantation. The sensitivity of haematopoietic stem cells to non-homologous end-joining deficiency is therefore a key determinant of their ability to maintain themselves against physiological stress over time and to withstand culture and transplantation.  相似文献   

3.
Immunoglobulin variable region exons are assembled in developing B cells by V(D)J recombination. Once mature, these cells undergo class-switch recombination (CSR) when activated by antigen. CSR changes the heavy chain constant region exons (Ch) expressed with a given variable region exon from Cmu to a downstream Ch (for example, Cgamma, Cepsilon or Calpha), thereby switching expression from IgM to IgG, IgE or IgA. Both V(D)J recombination and CSR involve the introduction of DNA double-strand breaks and their repair by means of end joining. For CSR, double-strand breaks are introduced into switch regions that flank Cmu and a downstream Ch, followed by fusion of the broken switch regions. In mammalian cells, the 'classical' non-homologous end joining (C-NHEJ) pathway repairs both general DNA double-strand breaks and programmed double-strand breaks generated by V(D)J recombination. C-NHEJ, as observed during V(D)J recombination, joins ends that lack homology to form 'direct' joins, and also joins ends with several base-pair homologies to form microhomology joins. CSR joins also display direct and microhomology joins, and CSR has been suggested to use C-NHEJ. Xrcc4 and DNA ligase IV (Lig4), which cooperatively catalyse the ligation step of C-NHEJ, are the most specific C-NHEJ factors; they are absolutely required for V(D)J recombination and have no known functions other than C-NHEJ. Here we assess whether C-NHEJ is also critical for CSR by assaying CSR in Xrcc4- or Lig4-deficient mouse B cells. C-NHEJ indeed catalyses CSR joins, because C-NHEJ-deficient B cells had decreased CSR and substantial levels of IgH locus (immunoglobulin heavy chain, encoded by Igh) chromosomal breaks. However, an alternative end-joining pathway, which is markedly biased towards microhomology joins, supports CSR at unexpectedly robust levels in C-NHEJ-deficient B cells. In the absence of C-NHEJ, this alternative end-joining pathway also frequently joins Igh locus breaks to other chromosomes to generate translocations.  相似文献   

4.
S Berlin  H Ellegren 《Nature》2001,413(6851):37-38
We have taken a new approach to test the commonly accepted, but recently questioned, principle of clonal inheritance of vertebrate mitochondrial DNA (mtDNA) by relating its inheritance to a female-specific marker of nuclear DNA. Whereas this is impossible in organisms with male heterogamy (such as mammals), we show here that genealogies of mtDNA and the female-specific W chromosome of a bird species are completely concordant. Our results indicate that inheritance of mtDNA is free of detectable recombination effects over an evolutionary timescale.  相似文献   

5.
Deletions of muscle mitochondrial DNA (mtDNA) have recently been found in patients with mitochondrial myopathy. However, as most of the described cases were sporadic, and individual deletions involved different portions of mtDNA, the mechanism(s) producing the molecular lesions, as well as their mode of transmission, remain unclear. By studying families with mtDNA heteroplasmy, valuable information can be obtained about the role of inheritable factors in the pathogenesis of these disorders. We have studied four members of a family with autosomal dominant mitochondrial myopathy. Multiple deletions, involving the same portion of muscle mtDNA, were identified in all patients. Sequence analysis of the mutant mtDNAs, performed after DNA amplification by the polymerase-chain reaction showed that all the deletions start within a 12-nucleotide stretch at the 5' end of the D-loop region, a site of active communication between the nucleus and the mtDNA. The data indicate that a mutation of a nuclear-coded protein can destroy the integrity of the mitochondrial genome in a specific, heritable way.  相似文献   

6.
The end-joining reaction catalysed by DNA ligases is required by all organisms and serves as the ultimate step of DNA replication, repair and recombination processes. One of three well characterized mammalian DNA ligases, DNA ligase I, joins Okazaki fragments during DNA replication. Here we report the crystal structure of human DNA ligase I (residues 233 to 919) in complex with a nicked, 5' adenylated DNA intermediate. The structure shows that the enzyme redirects the path of the double helix to expose the nick termini for the strand-joining reaction. It also reveals a unique feature of mammalian ligases: a DNA-binding domain that allows ligase I to encircle its DNA substrate, stabilizes the DNA in a distorted structure, and positions the catalytic core on the nick. Similarities in the toroidal shape and dimensions of DNA ligase I and the proliferating cell nuclear antigen sliding clamp are suggestive of an extensive protein-protein interface that may coordinate the joining of Okazaki fragments.  相似文献   

7.
茄子雄性不育株和可育株的胞质DNA和核DNA差异分析   总被引:2,自引:0,他引:2  
以茄子(Solanum melongenaL)雄性不育株“正兴1号”(S)和可育株(F)的总DNA为模板,对60个随机引物进行了筛选,找到5个其RAPD(Random amplified polymorphic DNA,RAPD)扩增产物在茄子雄性不育系和对照材料间存在稳定差异的引物.将该5个引物同时扩增总DNA、核DNA和线粒体DNA(mitochondrial DNA,mtDNA).以总DNA为模板时得到多态性片段9个,以核DNA为模板时得到5个,以mtDNA为模板时得到9个.以总DNA为模板时得到的9个扩增片段中,有5个在总DNA和mtDNA中同时出现,而在核中没有出现,即认为来自mtDNA,这5个片段中,有4个来自可育株,1个来自不育株,说明不育株和可育株在mtDNA上存在差异;有4个片段同时出现在以总DNA和核DNA为模板的扩增中,但在以mtDNA为模板的扩增中却没有出现,认为是来自核DNA,这4个片段中,有3个来自不育株,一个来自可育株,说明可育株和不育株在核DNA上也存在差异.结果初步表明:新发现的茄子雄性不育可能是核质相互作用所引起.  相似文献   

8.
DNA连接酶Ⅲ被认为只存在于脊椎动物,并在细胞核DNA的修复和线粒体DNA的复制和修复过程中发挥功能.虽然近来有关于无脊椎动物中存在着DNA连接酶Ⅲ的报道,但其功能演化及在无脊椎动物中的分布仍不清楚.为进一步探讨DNA连接酶Ⅲ的功能演化,进行了数据库搜索、线粒体定位信号(MLS)预测和功能位点保守性分析等.研究结果显示:DNA连接酶Ⅲ在变形虫、动物界和领鞭毛虫中广泛存在,但其在真菌界等发生整个蛋白或部分结构域的丢失;很多物种的DNA连接酶Ⅲ不含线粒体定位信号,因此,它们不太可能在线粒体中发挥作用,而参与细胞核DNA的修复是DNA连接酶Ⅲ较为古老和保守的功能.  相似文献   

9.
H G Hall  K Muralidharan 《Nature》1989,339(6221):211-213
African honey bees have populated much of South and Central America and will soon enter the United States. The mechanism by which they have spread is controversial. Africanization may be largely the result of paternal gene flow into extant European populations or, alternatively, of maternal migration of feral swarms that have maintained an African genetic integrity. We have been using both mitochondrial and nuclear DNA restriction fragment length polymorphisms to follow the population dynamics between European and African bees. In earlier reports, we suggested that if African honey bees had distinctive mitochondrial (mt) DNA, then it could potentially distinguish the relative contributions of swarming and mating to the Africanization process. Because mtDNA is maternally inherited, it would not be transmitted by mating drones and only transported by queens accompanying swarms. Furthermore, the presence of African mtDNA would reflect unbroken maternal lineages from the original bees introduced from Africa. The value of mtDNA for population studies in general has been reviewed recently. Here we report that 19 feral swarms, randomly caught in Mexico, all carried African mtDNA. Thus, the migrating force of the African honey bee in the American tropics consists of continuous African maternal lineages spreading as swarms. The mating of African drones to European queens seems to contribute little to African bee migration.  相似文献   

10.
Spinocerebellar ataxia with axonal neuropathy-1 (SCAN1) is a neurodegenerative disease that results from mutation of tyrosyl phosphodiesterase 1 (TDP1). In lower eukaryotes, Tdp1 removes topoisomerase 1 (top1) peptide from DNA termini during the repair of double-strand breaks created by collision of replication forks with top1 cleavage complexes in proliferating cells. Although TDP1 most probably fulfils a similar function in human cells, this role is unlikely to account for the clinical phenotype of SCAN1, which is associated with progressive degeneration of post-mitotic neurons. In addition, this role is redundant in lower eukaryotes, and Tdp1 mutations alone confer little phenotype. Moreover, defects in processing or preventing double-strand breaks during DNA replication are most probably associated with increased genetic instability and cancer, phenotypes not observed in SCAN1 (ref. 8). Here we show that in human cells TDP1 is required for repair of chromosomal single-strand breaks arising independently of DNA replication from abortive top1 activity or oxidative stress. We report that TDP1 is sequestered into multi-protein single-strand break repair (SSBR) complexes by direct interaction with DNA ligase IIIalpha and that these complexes are catalytically inactive in SCAN1 cells. These data identify a defect in SSBR in a neurodegenerative disease, and implicate this process in the maintenance of genetic integrity in post-mitotic neurons.  相似文献   

11.
Ataxia oculomotor apraxia-1 (AOA1) is a neurological disorder caused by mutations in the gene (APTX) encoding aprataxin. Aprataxin is a member of the histidine triad (HIT) family of nucleotide hydrolases and transferases, and inactivating mutations are largely confined to this HIT domain. Aprataxin associates with the DNA repair proteins XRCC1 and XRCC4, which are partners of DNA ligase III and ligase IV, respectively, suggestive of a role in DNA repair. Consistent with this, APTX-defective cell lines are sensitive to agents that cause single-strand breaks and exhibit an increased incidence of induced chromosomal aberrations. It is not, however, known whether aprataxin has a direct or indirect role in DNA repair, or what the physiological substrate of aprataxin might be. Here we show, using purified aprataxin protein and extracts derived from either APTX-defective chicken DT40 cells or Aptx-/- mouse primary neural cells, that aprataxin resolves abortive DNA ligation intermediates. Specifically, aprataxin catalyses the nucleophilic release of adenylate groups covalently linked to 5'-phosphate termini at single-strand nicks and gaps, resulting in the production of 5'-phosphate termini that can be efficiently rejoined. These data indicate that neurological disorders associated with APTX mutations may be caused by the gradual accumulation of unrepaired DNA strand breaks resulting from abortive DNA ligation events.  相似文献   

12.
Ricchetti M  Fairhead C  Dujon B 《Nature》1999,402(6757):96-100
The endosymbiotic theory for the origin of eukaryotic cells proposes that genetic information can be transferred from mitochondria to the nucleus of a cell, and genes that are probably of mitochondrial origin have been found in nuclear chromosomes. Occasionally, short or rearranged sequences homologous to mitochondrial DNA are seen in the chromosomes of different organisms including yeast, plants and humans. Here we report a mechanism by which fragments of mitochondrial DNA, in single or tandem array, are transferred to yeast chromosomes under natural conditions during the repair of double-strand breaks in haploid mitotic cells. These repair insertions originate from noncontiguous regions of the mitochondrial genome. Our analysis of the Saccharomyces cerevisiae mitochondrial genome indicates that the yeast nuclear genome does indeed contain several short sequences of mitochondrial origin which are similar in size and composition to those that repair double-strand breaks. These sequences are located predominantly in non-coding regions of the chromosomes, frequently in the vicinity of retrotransposon long terminal repeats, and appear as recent integration events. Thus, colonization of the yeast genome by mitochondrial DNA is an ongoing process.  相似文献   

13.
Mitochondrial DNA (mtDNA) is unusual in its rapid rate of evolution and high level of intraspecies sequence variation. The latter is thought to be related to the strict maternal inheritance of mtDNA, which effectively isolates within a species mitochondrial gene pools that accumulate mutations and vary independently. A fundamental and as yet unexplained aspect of this process is how, in the face of somatic and germ-line mtDNA ploidy of 10(3) to 10(5) (refs 4, 5), individual variant mtDNA molecules resulting from mutational events can come to dominate the large intracellular mtDNA population so rapidly. To help answer this question, we have determined here the nucleotide sequence of all or part of the D-loop region in 14 maternally related Holstein cows. Four different D-loop sequences can be distinguished in the mtDNA of these animals. One explanation is that multiple mitochondrial genotypes existed in the maternal germ line and that expansion or segregation of one of these genotypes during oogenesis or early development led to the rapid genotypic shifts observed.  相似文献   

14.
碱基切除修复途径是去除氧化和甲基化碱基的最主要途径。在碱基切除修复过程中,多个蛋白质,诸如DNA糖基酶、APE1内切酶、DNA聚合酶beta和DNA连接酶在体内的精密调节下高度协调地作用,从而切除受损碱基,使DNA恢复正常序列。碱基切除修复对维持基因组的稳定及抑制肿瘤发生等生理过程有重要作用。为了进一步从分子水平阐明APE1的作用机制,我们从HeLa细胞的cDNA文库中克隆得到APE1基因,使APE1在大肠杆菌中得到表达,并用蛋白质纯化的快速液相层析法经过一系列层析柱纯化了重组APE1蛋白质,APE1的生物化学功能研究正在进行中。  相似文献   

15.
Point mutations and deletions of mitochondrial DNA (mtDNA) accumulate in a variety of tissues during ageing in humans, monkeys and rodents. These mutations are unevenly distributed and can accumulate clonally in certain cells, causing a mosaic pattern of respiratory chain deficiency in tissues such as heart, skeletal muscle and brain. In terms of the ageing process, their possible causative effects have been intensely debated because of their low abundance and purely correlative connection with ageing. We have now addressed this question experimentally by creating homozygous knock-in mice that express a proof-reading-deficient version of PolgA, the nucleus-encoded catalytic subunit of mtDNA polymerase. Here we show that the knock-in mice develop an mtDNA mutator phenotype with a threefold to fivefold increase in the levels of point mutations, as well as increased amounts of deleted mtDNA. This increase in somatic mtDNA mutations is associated with reduced lifespan and premature onset of ageing-related phenotypes such as weight loss, reduced subcutaneous fat, alopecia (hair loss), kyphosis (curvature of the spine), osteoporosis, anaemia, reduced fertility and heart enlargement. Our results thus provide a causative link between mtDNA mutations and ageing phenotypes in mammals.  相似文献   

16.
DNA typing from single hairs   总被引:71,自引:0,他引:71  
The characterization of genetic variation at the DNA level has generated significant advances in gene and disease mapping, and in the forensic identification of individuals. The most common method of DNA analysis, that of restriction fragment length polymorphism (RFLP), requires microgram amounts of relatively undegraded DNA for multi-locus typing, and hundreds of nanograms for single-locus comparisons. Such DNA frequently cannot be obtained from forensic samples such as single hairs and blood stains, or from anthropological, genetic or zoological samples collected in the field. To detect polymorphic DNA sequences from single human hairs, we have used the polymerase chain reaction (PCR), in which specific short regions of a gene can be greatly amplified in vitro from as little as a single molecule of DNA. We have detected genetically variable mitochondrial and nuclear DNA sequences from the root region of shed, as well as freshly-plucked, single hairs; mitochondrial DNA (mtDNA) sequences have been detected in a sample from a single hair shaft. We have used three different means of DNA typing on these samples: the determination of amplified DNA fragment length differences, hybridization with allele-specific oligonucleotide probes, and direct DNA sequencing.  相似文献   

17.
A role for Saccharomyces cerevisiae histone H2A in DNA repair   总被引:11,自引:0,他引:11  
Downs JA  Lowndes NF  Jackson SP 《Nature》2000,408(6815):1001-1004
  相似文献   

18.
核基因组中线粒体DNA片段是线粒体基因向核基因组转移造成的.这些线粒体来源的核DNA片段都是不能表达的假基因,这种序列容易被通用引物从总DNA模板中优先扩增出来,它的存在必然给mtDNA的应用带来负面影响.总结了脊椎动物线粒体假基因的特点,结合笔在GenBank上发现的登录为mtDNA而实际为假基因的序列提出假基因存在的普遍性,分析这种序列对mtDNA在人类线粒体病理学、脊椎动物系统进化研究等方面应用的负面影响.对假基因在线粒体和细胞核两基因组进化研究以及物种系统发育学研究中的应用前景进行展望.  相似文献   

19.
Escape of DNA from mitochondria to the nucleus in Saccharomyces cerevisiae   总被引:11,自引:0,他引:11  
P E Thorsness  T D Fox 《Nature》1990,346(6282):376-379
The migration of genetic information from ancestral prokaryotic endosymbionts into eukaryotic nuclei is thought to have had an important role in the evolution of mitochondria and chloroplasts. Here we describe an assay for the detection of movement of DNA between mitochondria and the nucleus in yeast. Because recombinant plasmid DNA replicates after transformation into mitochondria of yeast strains lacking endogenous mitochondrial DNA we were able to propagate the nuclear genetic marker URA3 in mitochondria. As expected, the wild-type URA3 gene in mitochondria failed to complement the uracil auxotrophy (Ura-) caused by a nuclear ura3 mutation. But selection of Ura+ prototrophs from a Ura- strain carrying URA3 on a plasmid in its mitochondria enabled us to detect plasmid movement to the nucleus. Conversely, as the plasmid used also contained the mitochondrial gene COX2 required for respiratory growth, we were able to set up corresponding selections to detect migration of DNA from the nucleus to the mitochondria. Our results show that, in yeast, DNA escapes from mitochondria and appears in the nucleus at a surprisingly high frequency (approximately 2 x 10(-5) per cell per generation). But the rate at which DNA makes the journey in the opposite direction--nucleus to mitochondria--is apparently at least 100,000 times less.  相似文献   

20.
I J Holt  A E Harding  J A Morgan-Hughes 《Nature》1988,331(6158):717-719
In vitro studies of muscle mitochondrial metabolism in patients with mitochondrial myopathy have identified a variety of functional defects of the mitochondrial respiratory chain, predominantly affecting complex I (NADH-CoQ reductase) or complex III (ubiquinol-cytochrome c reductase) in adult cases. These two enzymes consist of approximately 36 subunits, eight of which are encoded by mitochondrial DNA (mtDNA). The increased incidence of maternal, as opposed to paternal, transmission in familial mitochondrial myopathy suggests that these disorders may be caused by mutations of mtDNA. Multiple restriction endonuclease analysis of leukocyte mtDNA from patients with the disease, and their relatives, showed no differences in cleavage patterns between affected and unaffected individuals in any single maternal line. When muscle mtDNA was studied, nine of 25 patients were found to have two populations of muscle mtDNA, one of which had deletions of up to 7 kilobases in length. These observations demonstrate that mtDNA heteroplasmy can occur in man and that human disease may be associated with defects of the mitochondrial genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号