首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 229 毫秒
1.
甲醛具有挥发性强、毒性大等特点,随着社会经济的发展,甲醛已成为不容忽视的空气污染物之一,所以本文采用微波加热法以十六烷基三甲基溴化铵(HTAB)为改性剂制备高吸附甲醛性能的有机膨润土,并针对微波改性有机膨润土制备过程中的关键因素对其吸附甲醛性能的影响进行研究。结果表明:膨润土的改性最佳工艺条件是改性剂用量为120 mmol/100 g,固液比为1:6,微波功率为320 W,微波加热时间为2 min;以此条件制备的有机膨润土对甲醛的吸附饱和时间为120 min,此时有机改性膨润土对甲醛气体的吸附达到最大值,最大吸附量为15.903mg/g;通过扫描电子显微镜、全自动比表面积孔径分析仪、激光粒度仪等对产品的比表面积、孔径、孔容、表观形态、粒度分布性能进行表征,分析了改性有机膨润土对甲醛气体的吸附原理。该研究可为去除室内和废水中挥发性有机化合物甲醛的实际应用提供一定的技术参考。  相似文献   

2.
以膨润土为原料,采用浸渍法制备羟基锆改性膨润土,并用于水中磷的吸附。考察了锆/膨润土(Zr/R-B)摩尔质量比为0.2 mmol/g,0.4 mmol/g,0.6 mmol/g,0.8 mmol/g,1.0 mmol/g,1.2 mmol/g时磷的吸附性能,研究了吸附时间、初始浓度和pH等因素对羟基锆改性膨润土吸附磷的影响,并对吸附机理进行分析。结果表明:改性后膨润土磷吸附性能显著提高,Zr/R-B为0.8 mmol/g时磷吸附效果较好。吸附动力学可用拟二级动力学方程描述,吸附等温线符合Langmuir模型,吸附为化学吸附,且温度为293 K条件下,理论最大吸附量为13.3 mg/g。pH的升高不利于磷的吸附。0.1 mol/L NaOH条件下,经过5次循环再生,羟基锆改性膨润土对磷的吸附量降低18.6%。SEM-EDS、pH和XPS分析表明,磷的吸附机理主要为配体交换。  相似文献   

3.
改性膨润土处理酸性大红染料废水试验研究   总被引:2,自引:0,他引:2  
染料在工业中被越来越广泛地使用,其产生的废水已经成为目前较为难处理的工业废水之一.以壳聚糖为改性剂,对资源丰富的天然膨润土进行有机改性,制得一种新型水处理剂--壳聚糖改性膨润土.采用物理吸附法对酸性大红染料废水进行处理,考查了pH值、搅拌时间、投土量、离心时间4个因素的影响,确定了最佳处理工艺条件:pH值4、搅拌6 min、投土量14 g/L、离心17 min.此时处理效果最佳,脱色率可达97%.此外,通过对原土和壳聚糖改性膨润土进行的比表面积、红外光谱和扫描电镜等表征测定分析可知,壳聚糖的加入并没有改变膨润土的基本框架,只是增大了膨润土的比表面积,从而提高吸附性能.  相似文献   

4.
以钙基膨润土为原料,经提纯钠化后用十二烷基三甲基溴化铵进行有机改性.探讨了有机膨润土对有机磷农药氧化乐果的吸附性能,考察了pH、温度、吸附时间以及有机膨润土用量对吸附效果的影响.结果表明,改性膨润土对水中氧化乐果的去除能力优于原土,对50 mL浓度为0.8 g/L的氧化乐果溶液,在pH值为7.0、温度25℃、吸附时间30 min、有机膨润土投加量10 g/L条件下,对氧化乐果的去除率可达80.6%.  相似文献   

5.
为了提高膨润土对苯酚的吸附性能,以硅烷偶联剂KH550为改性剂,采用共沉淀法制备KH550改性膨润土。采用场发射扫描电子显微镜(FESEM)、傅里叶变换红外光谱仪(FT-IR)、X线衍射仪(XRD)、N_2吸附-脱附仪和热分析仪(TG)对样品性能进行表征,利用静态批处理方式研究KH550改性膨润土对苯酚的吸附作用。结果表明:改性后的土层片大小均匀,片层有褶皱、堆叠,可增加苯酚在单位体积吸附剂中的吸附位点;KH550接枝到膨润土的表面和层间,可增加层间距;改性膨润土具有微孔和介孔结构,KH550进入膨润土层间,可增大孔容,为苯酚进入膨润土层间提供空间;改性膨润土具有较好的热稳定性,为吸附剂热脱附再生提供有利条件。在苯酚初始质量浓度为200 mg/L、改性膨润土投加量为3 g/L、pH=7、温度为30℃、吸附时间为60 min时,改性膨润土的吸附量达到25.0 mg/g。改性膨润土对苯酚的吸附符合拟二级动力学模型和Langmuir等温吸附模型,改性膨润土吸附苯酚为放热、熵减过程。  相似文献   

6.
通过对壳聚糖(CTS)改性膨润土的制备(改性土)及对活性嫩黄印染废水吸附性能研究,探讨了壳聚糖量、醋酸体积分数等因素,制得改性土以及改性土用量、染料质量浓度、介质的pH等对吸附性能的影响.结果表明:随着壳聚糖量的增加,吸附量逐渐增大,达到最大值后逐渐减小;醋酸体积分数为1%时制备的壳聚糖改性土吸附效果最好.随着改性土用量的增大,吸附量逐渐减小;吸附量随活性嫩黄染料质量浓度的增加而增加.壳聚糖量为0.089g、醋酸体积分数1%、改性土用量0.600g,吸附效果最好.吸附试验符合Arrhenius方程模型,并通过XRD分析结果证实了改性土的制备.  相似文献   

7.
为探讨改性活性炭吸附有机气体性能的影响,商业活性炭分别经过1 mol/L的硝酸、盐酸、硫酸,600,700和800℃处理.通过Boehm滴定、傅式转换红外光谱(FTIR)、比表面积分析仪对活性炭样品的物化性质进行测试.以二氯乙烷为吸附质进行吸附实验研究,结果表明:酸改性样品的表面酸性官能团数量增加,热改性样品的表面碱性官能团数量增加;热改性比酸改性更有效的优化活性炭的孔结构;增大活性炭的理论有效孔容是提高二氯乙烷吸附量的有效途径,表面官能团的增加可以促进活性炭对二氯乙烷的吸附作用.  相似文献   

8.
采用物理吸附仪对活性炭孔结构及比表面积进行表征,运用Boehm滴定法分析了活性炭改性前后表面酸性和酸性分布,并用X射线能谱仪对活性炭氧化改性前后氧元素含量进行了半定量分析,以期揭示活性炭物理、化学性质对滤嘴吸附性能的影响。研究结果表明:随着滤嘴中活性炭添加量的增加,滤嘴对烟气的吸附性能越高,在不显著增加香烟吸阻的前提下,选择30mg/g为滤嘴中活性炭最佳添加量;活性炭比表面积越高、孔容越大、酸性越强,滤嘴对香烟主流烟气的吸附性能越好。与普通醋酸纤维滤嘴相比,HNO3改性活性炭的滤嘴对尼古丁和焦油的吸附能力分别提高25.6%和8.8%。  相似文献   

9.
采用浸渍法将聚乙烯亚胺(PEI)负载到MIL-101(Cr)上。采用X线衍射仪(XRD)、傅里叶变换红外光谱仪(FT-IR)、热分析仪(TG)和N_2吸附-脱附对改性MIL-101(Cr)吸附剂进行表征。测试改性MIL-101(Cr)吸附剂在101.3 k Pa、25℃条件下对CO_2和CH_4的吸附量,分析PEI负载量和CO_2吸附量与改性MIL-101(Cr)吸附剂的孔径、孔容、比表面积的关系。结果表明:与未改性的MIL-101(Cr)相比,PEI负载量为3.0 mmol的改性MIL-101(Cr)吸附剂对CO_2的吸附量由74.6 cm3/g提升到114.3 cm~3/g,对CH_4的吸附量由11.8 cm~3/g降至8.0 cm~3/g,改性MIL-101(Cr)吸附剂大大提高了CO_2/CH_4的分离性能。改性MIL-101(Cr)吸附剂在80℃、533.12 Pa条件下处理即可完全脱附再生,循环5次对CO_2的吸附性能基本不变。  相似文献   

10.
探索壳聚糖与膨润土的质量比与反应介质酸度对制备壳聚糖改性膨润土的影响并以改性土为吸附剂探讨了改性土质量、吸附温度、吸附时间、介质的pH值及酸性红溶液质量浓度对酸性红吸附性能的影响.结果表明:制备的改性土随着壳聚糖质量的增加吸附量先增大后减小、随着反应介质的酸度增强,改性土的吸附能力增加;随着改性土质量的增加吸附量先增大后减小;随着反应温度上升改性土吸附能力先增大后减小;随着酸性红染料质量浓度的增加吸附能力增加;随着反应pH值的增大吸附能力先增大后减少.质量比为1∶125,冰醋酸体积分数为1%为最佳制备条件,改性土质量为0.6g,温度温度为25℃,吸附时间为70min,介质pH为7左右时是最佳吸附条件.且其吸附行为满足Langmuir等温式.  相似文献   

11.
酸改性膨润土处理苯酚废水的工艺研究   总被引:1,自引:1,他引:0  
以辽宁膨润土和硫酸为主要原料制备了改性膨润土,并研究了改性膨润土吸附苯酚废水的工艺条件。结果表明:使用改性膨润土0.3 g处理浓度为20 mg/L的苯酚废水,固液比为6 g/L,常温吸附1.5 h,苯酚浓度去除率达到65%~70%;改性膨润土对高浓度苯酚的浓度去除率较低浓度的更好,浓度去除率达到75%。  相似文献   

12.
为了提高活性炭在高湿地区对气态碘的吸附性能,采用十三氟辛基三乙氧基硅烷为疏水改性剂,椰壳活性炭为载体,对活性炭进行疏水改性。首先利用接触角分析仪、扫描电子显微镜(scanning electron microscope,SEM)、比表面积分析、能谱分析(energy dispersive spectroscopy,EDS)等手段表征其结构和疏水性能。然后通过气态碘的吸附实验探究改性活性炭在高湿环境下对气态碘的吸附性能,同时考察了温度、速度对其吸附性能的影响规律。表征结果表面,改性处理后的活性炭对水的静态接触角为152°疏水性良好,扫描电子显微镜、能谱分析均证实活性炭表面覆盖了疏水薄膜且疏水改性对活性炭的孔隙结构影响小。实验结果表明,改性后的活性炭具有良好的选择吸附性。环境湿度的增加对活性炭吸附性能影响较小,随湿度增加活性炭对气态碘的吸附量仅下降了20.02%,而改性前的活性炭吸附量下降了78.26%,改性前后最大吸附系数差值为99.94 mg/g。气流温度、速度和压力对吸附性能产生一定影响,过高的温度和速度会使活性炭的吸附能力下降,压力的增加会使活性炭的吸附能力上升。  相似文献   

13.
以热固性酚醛树脂为原料,采用CO2物理活化法制备双电层电容器,用高比表面积活性炭.由氮气吸附法测定活性炭的比表面积和孔结构,采用循环伏安、交流阻抗和恒电流充放电考察其在3000/KOH水溶液中的电容特性.结果表明,随着活化时间的延长,所得活性炭收率下降,比表面积、总孔孔容和质量比电容则不断增加;具有高比表面积和宽孔径分布的试样APF957质量比电容值最高,电流密度由50 mA/g提高到1000 mA/g时,其放电比电容由211.6 F/g降低到196.5 F/g,容量保持率达到9300/,显示出良好的功率特性.  相似文献   

14.
以黄麻杆为原料,采用磷酸活化法制备活性炭,通过正交试验探讨了磷酸浓度、活化温度、活化时间对活性炭得率和吸附性能的影响,确立了最佳制备工艺,即:磷酸浓度2mol/L、活化温度400℃、活化时间1h.实验结果表明:在最佳工艺条件下制得的黄麻杆活性炭得率为4,2.93%,碘吸附值为1059.26mg/g,亚甲基蓝吸附值为353.10mg/g,比表面积为1779.4m㎡/g,总孔容为0.960m3/g,平均孔径为2.16nm,呈现出高中孔率结构.  相似文献   

15.
FeCl3-CO2体系改性活性炭的研究   总被引:3,自引:0,他引:3  
以FeCl3为催化剂,用CO2对原料炭(LAC)进行改性。用乙醇、亚甲基蓝和VB12表征其吸附性能;氮气吸附(温度为77K)方法测定活性炭的孔结构,计算其BET比表面积;密度函数理论(DFT)表征其孔径分布。实验结果表明,改性后活性炭的BET比表面积和总孔容增加了1倍,使改性后活性炭对乙醇、亚甲基蓝和VB12的吸附量都有显著提高,且改性后活性炭的孔径分布更趋均匀。  相似文献   

16.
用硝酸对活性炭进行去灰分处理,并用水蒸气进行二次活化,将活性炭制成电极,在电吸附装置中进行电吸附测试。结果表明,二次活化可以提高活性炭的比表面积和孔容,并使得活性炭的单位吸附量从2.92 mg/g提高到4.55 mg/g。活化效果受活化时间和活化温度共同影响,活化1h 的效果最好,提高活化温度有利于提高吸附性能。  相似文献   

17.
改性生物炭对镉离子吸附性能研究   总被引:5,自引:0,他引:5       下载免费PDF全文
以废弃松木屑为原料采用热分解法制备生物炭,并以氨气、硝酸、硫化钠和溴水4种化学试剂分别对其进行表面改性。采用BET、FTIR和Bohem滴定等技术对改性前后的生物炭进行表征,研究溶液pH值、初始溶液Cd2+浓度、吸附时间等因素对Cd2+吸附特性的影响,并探讨改性生物炭的吸附机理。结果表明,改性生物炭具有较大的比表面积、发达的孔结构和多种表面官能团;在一定范围内,随溶液pH值的增大、Cd2+浓度的升高、吸附时间的延长,改性生物炭对Cd2+的去除率逐渐提高,其中氨气改性生物炭对Cd2+的吸附效果最优,在溶液pH值为6、初始溶液Cd2+浓度为50mg/L、生物炭加入量为2g/L、吸附时间为6h时,氨气改性生物炭对Cd2+的吸附容量可达12.3mg/g;拟二级动力学方程和等温吸附模型均能较好地描述改性生物炭对Cd2+的吸附过程,其中氨气改性生物炭的Langmuir与Freundlich吸附常数最大。  相似文献   

18.
采用浸渍负载法制备了分子筛担载的钾催化剂K/Zeo(Zeo = ZSM-5,Y),研究了分子筛及K/Zeo对乳酸制备2,3-戊二酮的催化活性.对催化剂进行了X-光衍射和低温氮气吸附表征.结果表明,改性过程导致分子筛的骨架结构在一定程度上的破坏,比表面积、孔体积减小,而孔径增加.催化剂反应性能评价及碳平衡研究表明,与改性...  相似文献   

19.
为研究粉煤灰的活化性能,在不同温度下焙烧粉煤灰,采用氮吸附法测定焙烧前后粉煤灰的比表面积、孔体积及孔径分布,并进行粉煤灰对Rhodamine-B水溶液的吸附实验。结果表明:粉煤灰的比表面积、孔体积及介孔数量随焙烧温度升高而逐渐增大,700℃时达到最大值,此后随焙烧温度升高而减小;焙烧后粉煤灰对水溶液中的Rhodamine-B分子的吸附性能显著提高。该结果为粉煤灰吸附机理研究提供了有益参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号