首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
提出了一种交通视频中的Kalman滤波的多车辆跟踪算法.该算法利用Kalman滤波器反馈控制系统估计运动状态进行预测和修正,并为运动目标建立模型;利用当前车辆的信息对下一帧目标的位置进行预测,以便缩小目标的搜索范围和搜索时间,从而快速跟踪车辆.利用车辆的外接矩形框大小、质心等特征对车辆进行特征匹配,为交通视频中的车辆建立对应关系,利用新的系统参数更新模型,获得车辆的轨迹,如此反复,从而实现对车辆的跟踪.实验结果表明,此算法运算速度很快,对于车辆这样的快速运动目标,也具有较好的跟踪效果.  相似文献   

2.
提出一种基于Contourlet直方图的MeanShift交通视频车辆目标跟踪算法.首先,利用Contourlet变换提取交通视频中感兴趣区域下跟踪目标的纹理特征和轮廓,并用其直方图统计跟踪目标的纹理特征;然后,通过Kalman滤波技术来进行跟踪目标轨迹的相关性函数计算,并将计算结果迭代到MeanShift跟踪算法中选取最优估计值,进而实现对交通视频车辆在复杂场景中的精确定位.通过与传统的MeanShift跟踪算法以及基于Kalman滤波的MeanShift跟踪算法等比较表明,此算法不仅能够对复杂场景中的视频车辆进行有效跟踪,同时还具有较好的稳定性和抗干扰性.  相似文献   

3.
针对履带式车辆自主行驶控制中滑动参数难以精确估计和在复杂地面条件下难以稳定跟踪目标路径的问题,提出一种考虑履带车辆滑动转向特性的改进模型,并以此为被控对象设计基于深度强化学习方法的路径跟踪控制器.首先,基于球?面接触原理建立履带车辆的动力学模型.其次,提出基于实车稳态转向实验数据的滑移率估计方法,并结合履带车辆的滑动转...  相似文献   

4.
监控视频智能分析是智慧校园的关键内容之一,可自动提取并识别监控视频中的有效事件信息。本文基于深度学习实现校园监控车辆管理,基于深度图像特征提取识别车辆,基于车辆检测实现跟踪、速度检测和超速以及违停等事件检测,实现了应用系统,检测效果优于传统方法。  相似文献   

5.
针对移动目标检测,提出了基于变化因子参考背景学习与方向预测算子的图像跟踪方法.以高速行驶车辆为目标建立变化因子,在此基础上进行视频图像参考背景的学习,并通过互相关匹配与坐标变换实现运动目标的定位及速度确定,结合方向预测算子对车辆行驶矢量进行预测,进而实现目标车辆的图像跟踪.跟踪实验及性能比较证明本方法可获得准确稳定的运动车辆跟踪结果,为运动目标的图像监控研究提供了新的思路.  相似文献   

6.
针对车辆运动方向持续变化、目标车辆距离远近变化、光照强度变化等场景下,稳定且实时性地跟踪车辆的难点问题,融合自相关矩阵增量主成分分析(Incremental Principal Component Analysis,IPCA)增量学习与粒子滤波算法的基础上,提出一种新的基于表观模型(Appearance Model,AM)的车辆跟踪方法,从跟踪初始利用自相关矩阵与特征值分解构建车辆的子空间图像,通过IPCA增量学习后的子空间均值、特征向量基共同参与似然概率密度的计算,提高粒子滤波算法粒子权值计算的精度.标准视频的跟踪实验表明:对比P.Hall-IPCA与D.Ross-IPCA表观模型跟踪方法,所提AM-IPCA车辆跟踪方法将跟踪成功率分别由82.7%~92.3%、92.1%~95.2%提升至95.1%~96.4%.  相似文献   

7.
针对区域跟踪算法难以解决因车辆遮挡而引起误检的问题,提出了基于图像运动区域的车辆跟踪算法:采用背景剪除法提取运动区域,通过计算相邻帧运动区域的位置变化实现区域跟踪;建立车辆的二维矩形框模型,分析"区域--车辆"关系,结合区域跟踪的结果来判定车辆之间是否发生遮挡,并根据车辆行为来初始化车辆模型轮廓及速度;采用Kalman滤波器预测车辆在当前帧的位置,并以此预测位置作为车辆模型的初始位置进行模型轮廓的自适应调整,得到模型新的矩形轮廓;将新轮廓其所确定的几何中心位置作为测量值反馈回Kalman滤波器,修正Kalman系数,进行自回归运算和计算最佳匹配位置,从而实现车辆跟踪.算法测试实验使用的视频采集自江苏省通启高速公路视频监控系统,采用P4/2.4单CPU,结果表明,在为25帧/s视频流下,该算法准确跟踪率达到94.72%,有效解决遮挡问题,并具有较好的鲁棒性.  相似文献   

8.
提出一种基于改进高斯混合模型和卡尔曼滤波的车辆检测与跟踪方法.该方法在车辆检测阶段,为了解决传统高斯混合模型对运动目标速度变化自适应能力较差的问题,通过定义运动目标速率因子,给出一种模型学习率自适应更新策略,对传统高斯混合模型进行了改进,并用以实现车辆检测;在车辆跟踪阶段,通过建立一个适用于视频目标跟踪的卡尔曼滤波系统,并以车辆检测阶段输出的车辆质心为该卡尔曼滤波系统的量测值,实现了选定车辆目标的跟踪.实验结果表明,该方法车辆检测与跟踪效果良好,能满足实际交通监控系统的需求.  相似文献   

9.
提出了一种基于混合搜索的匹配跟踪位分配策略,该方法依据人眼高级视觉特性在编码过程中动态确定编码质量优先的区域,并以此作为依据调整原有原子搜索策略,使得原子函数分布集中在感兴趣区域附近,从而改善整个匹配跟踪视频编码器的图像恢复质量.实验结果表明,利用该法所获得的图像恢复质量基本符合人眼的主观判断,而且算法复杂度较低,具有较高实用价值.  相似文献   

10.
一种面向全景视频的交通状态检测方法   总被引:2,自引:0,他引:2  
传统的交通状态检测方法对全景视频中的车辆检测时存在检测精度低、鲁棒性差等缺点。为了解决这些问题,该文提出了一种新的基于虚拟检测线的车辆检测方法。首先,利用提出的基于动态学习率的改进混合Gauss模型构建背景,背景模型的学习率由检测到的车速决定;其次,通过引入Mahalanobis距离来判断虚拟线上的像素是否属于背景;最后,通过设置检测跟踪区域检测车速并跟踪车辆行驶轨迹,避免重复计算车辆数。实验结果验证了所提方法的有效性及在各种场景下较强的鲁棒性。  相似文献   

11.
基于视频的车辆检测和分析算法   总被引:1,自引:0,他引:1  
为了高速公路行车安全,需要及时检测公路上车辆的异常停车情况.通过对视频图像分析,首先重建背景图像,再分割出车辆目标,然后进行目标跟踪,采用基于针孔模型的摄像机定标估算车辆的速度,利用速度信息分析高速公路上的车辆停车事件.现场实验结果表明,此方法对于高速公路上异常停车的检测具有较高的准确性.  相似文献   

12.
用于交通治安卡口的全天候视频车辆检测方法   总被引:1,自引:0,他引:1  
文章针对交通治安卡口应用,提出了一种基于视频的全天候智能车辆检测方法。该方法主要特点是不考虑车辆跟踪,提高了计算速度并避免了跟踪误差,适于嵌入到监控摄像机中;而且自动区分白天/夜间场景。对于白天场景,通过背景剪除、阴影抑制、形态学计算等手段获得运动信息,然后根据车辆的尺寸、对比度与纹理特征实现车辆检测;对于夜间场景,利用车灯的高亮度与对称性特征得到车辆检测结果。该方法快速有效,在现场采集的实际路况视频数据上,白天与夜间车辆检测准确率分别为96.42%和95.96%。  相似文献   

13.
基于视频的车辆检测与跟踪算法综述   总被引:3,自引:0,他引:3  
首先介绍了交通检测系统,指出视频交通检测技术日益成为计算机视觉领域中备受关注的前沿方向.在此基础上,分别讨论了常用的车辆检测算法,基于模型的车辆检测算法,车辆跟踪的基本类型,以及基于模板匹配、卡尔曼滤波和粒子滤波的车辆跟踪算法,同时分析比较了各种算法的优缺点.最后,展望了这一领域未来研究的热点.  相似文献   

14.
基于视频车辆轨迹模型的交通事件自动检测方法研究   总被引:3,自引:1,他引:2  
 研究了车辆违章逆行、停驻、掉头、倒退、变道五类具有潜在危险的交通(违章)事件,并且运用了基于视频的交通事件自动检测技术所涉及的目标提取、车辆跟踪和事件理解与描述3个步骤实现交通事件的检测。着重研究并分析了车辆跟踪得到的行驶轨迹点,将复杂的车辆轨迹分解为前行、反行、停滞、斜行四类轨迹元素,并且根据4类轨迹元素对车辆的行驶行为进行数学建模,最后通过模型制定合理的检测算法。实验表明,该算法可以有效地区分正常车辆与事件车辆,能够快速准确地检测上述5类交通事件。  相似文献   

15.
为解决传统车辆监管系统不能对行驶中车辆实时视频监控的问题,研制了一套基于ARM11的远程实时视频监控系统.系统采用了基于客户机/服务器(C/S)结构的整体设计方案,在车载客户端完成车辆信息的采集、视频信息的压缩编码,通过3G无线网络将数据发送到远程服务器,在服务器实现实时显示.实验表明,系统运行稳定,服务器可以获得良好的视频质量和定位精度.  相似文献   

16.
车辆分类系统是智能交通系统中的一个重要组成部分,其功能是检测车辆类型,为道路监控和交通规划提供信息。该文提出了一种基于Bayes网络的传感器融合车辆分类系统,通过微波和视频传感器分别得到车辆的高度轮廓和平面轮廓,采用混合Gauss分布对提取的车辆特征建模,然后在Bayes网络的框架下对7类车辆进行分类。实验表明:该分类系统可以将车辆分类的准确率从单微波传感器的79%提高到融合传感器的87%,特别是中小型车辆和大型车辆之间的重大分类错误率从9%降低到2%。  相似文献   

17.
为了解决高速公路环境下监控视频图像车型识别需要将海量视频数据上传计算机服务器中心,对所有的视频流图像进行结构化处理和车型识别,造成服务器中心数据压力大、计算任务重,对服务器性能要求高的问题。对此,提出一种基于机器学习的Cortex-M监控视频车型识别的方法。首先,将训练机训练好的六种车型的权值矩阵文件移植到前端Cortex-M核系列开发板上,采用开发板内嵌的CMSIS-NN网络函数库搭建与训练机相同的网络模型结构;同时采用开发板内嵌的CMSIS-DSP库加快图像处理速度,并对选择处理监控视频图像实现车型识别;实验结果表明,该方法平均识别率达到94.6%以上,与采用计算机进行识别相同,可见该方法能够缓解大量视频上传给服务器中心造成的压力,为高速公路环境下监控视频图像车型识别研究提供了一种可选择的方案。  相似文献   

18.
视频监控系统是智能交通监控系统的重要组成部分.通过监视区域车辆视频图像的预处理、检测,完成车辆的实时分类,并根据分类结果实时确定交通灯控制系统红黄绿灯的放行时间.采用活动轮廓跟踪模型对运动车辆视频图像实现检测,由模糊型支持向量机方法实现运动车辆的分类.Matlab软件仿真结果表明,大中小型车辆的平均正确识别率达96.49%,提高了车辆通行效率.  相似文献   

19.
为解决交通测试系统中车辆实时跟踪和分割的问题, 以数字图像处理方法为手段, 针对采集到的交通路况信息, 重点研究了背景差分算法提取运动车辆, 并提出了一种计算量较小的自适应背景更新算法; 采用一种工作在HSV(Hue, Saturation, Valve)空间非基于模型的车辆阴影检测算法, 并提出设置阈值参数的方法, 在去除车辆阴影的同时也滤除了行人、 自行车及摩托车等干扰; 针对车辆阴影检测后的二值化图像, 采用适合的形态学方法进行后期处理。对实际交通环境下的大量视频和图像进行测试的结果表明, 该方法可以有效地实现运动车辆的检测。  相似文献   

20.
为提高ITS(Intelligent Traffic System)交通事件管理的智能性, 提出基于跟踪轨迹的车辆异常行为检测,分为目标检测跟踪、轨迹分析处理和车辆行为分析3 个步骤。首先利用三帧差法对目标进行初始定位, 采用基于Kalman 预测器的改进跟踪算法对车辆进行跟踪; 然后提出采用最小二乘法自适应分段直线拟合算法对目标跟踪获得的运动轨迹进行快速拟合; 最后结合运动方向变化率和速度变化率两个参数建立车辆异常行为检测模型。实验结果表明, 在道路监控视频中, 该算法能快速准确检测急刹车、急转弯和急转弯刹车等车辆异常行为。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号