首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
2.
X-chromosome inactivation in mammals is a regulatory phenomenon whereby one of the two X chromosomes in female cells is genetically inactivated, resulting in dosage compensation for X-linked genes between males and females. In both man and mouse, X-chromosome inactivation is thought to proceed from a single cis-acting switch region or inactivation centre (XIC/Xic). In the human, XIC has been mapped to band Xq13 (ref. 6) and in the mouse to band XD (ref. 7), and comparative mapping has shown that the XIC regions in the two species are syntenic. The recently described human XIST gene maps to the XIC region and seems to be expressed only from the inactive X chromosome. We report here that the mouse Xist gene maps to the Xic region of the mouse X chromosome and, using an interspecific Mus spretus/Mus musculus domesticus F1 hybrid mouse carrying the T(X;16)16H translocation, show that Xist is exclusively expressed from the inactive X chromosome. Conservation between man and mouse of chromosomal position and unique expression exclusively from the inactive X chromosome lends support to the hypothesis that XIST and its mouse homologue are involved in X-chromosome inactivation.  相似文献   

3.
Cell lineage-specific undermethylation of mouse repetitive DNA   总被引:7,自引:0,他引:7  
V Chapman  L Forrester  J Sanford  N Hastie  J Rossant 《Nature》1984,307(5948):284-286
Several distinct cell lineages are established during mouse embryogenesis. The trophectoderm and primitive endoderm give rise to extraembryonic structures alone, while the primitive ectoderm becomes the fetus proper. Recent studies suggest that the levels of DNA modification are lower in inactive X chromosomes from extraembryonic tissues than in embryonic and adult somatic tissues. Using HpaII/MspI isoschizomers, Southern blots and cloned probes, we show here that repetitive DNA sequences from all derivatives of the two extraembryonic lineages, trophectoderm and primitive endoderm, are substantially undermethylated compared with primitive ectoderm derivatives. This contrasts with the highly methylated state of these repetitive elements observed in adult somatic tissues. Specific demethylation or inhibition of de novo methylation, or a combination of both mechanisms, may be involved. These findings suggest that elements of gene regulation dependent on DNA modification may be different in extraembryonic cell lineages.  相似文献   

4.
B S Kerem  R Goitein  C Richler  M Marcus  H Cedar 《Nature》1983,304(5921):88-90
Template-active regions of chromatin are structurally distinct from nontranscribing segments of the genome. Recently, it was suggested that the conformation of active genes which renders them sensitive to DNase I may be maintained even in fixed mitotic chromosomes. We have developed a technique of mitotic cell fixation and DNase I-directed nick-translation which distinguishes between active and inactive X chromosomes. We report here that Gerbillus gerbillus (rodent) female cells contain easily identified composite X chromosomes each of which includes the original X chromosome flanked by two characteristic autosomal segments. After nick-translation the active X chromosome in each cell is labelled specifically in both the autosomal and X-chromosomal regions. The inactive X chromosome is labelled only in the autosomal regions and in a small early replicating band within the late replicating 'original X' chromosome. Our technique opens the possibility of following the kinetics of X-chromosome inactivation and reactivation during embryogenesis, studying active genes in the inactive X chromosome and mapping tissue-specific gene clusters.  相似文献   

5.
6.
7.
对果蝇胚胎低表达和高表达水平基因内含子的序列结构进行分析,发现2种表达水平的基因内含子序列特征有明显差异.高表达基因的内含子一般比低表达基因的长,其中高表达基因第1内含子的平均长度是低表达基因的2.62倍,第2内含子的平均长度是低表达基因的1.79倍.两类基因第1内含子中的CpG岛含量最高,并且高表达基因内含子中CpG岛含量要高于低表达基因.此外,与低表达基因相比,TATA box、CAAT box和GC box在高表达基因内含子中出现的频数明显要高些,尤其是在第1内含子中.作者还提取出果蝇胚胎2种表达水平基因第1内含子中高频出现的6-mer简单重复序列,发现一些重复序列与实验得到的转录因子结合位点相符合.这些结果提示内含子特别是第1内含子有可能调控果蝇胚胎基因的转录从而影响基因的表达水平.  相似文献   

8.
Characterization of a murine gene expressed from the inactive X chromosome   总被引:43,自引:0,他引:43  
In mammals, equal dosage of gene products encoded by the X chromosome in male and female cells is achieved by X inactivation. Although X-chromosome inactivation represents the most extensive example known of long range cis gene regulation, the mechanism by which thousands of genes on only one of a pair of identical chromosomes are turned off is poorly understood. We have recently identified a human gene (XIST) exclusively expressed from the inactive X chromosome. Here we report the isolation and characterization of its murine homologue (Xist) which localizes to the mouse X inactivation centre region and is the first murine gene found to be expressed from the inactive X chromosome. Nucleotide sequence analysis indicates that Xist may be associated with a protein product. The similar map positions and expression patterns for Xist in mouse and man suggest that this gene may have a role in X inactivation.  相似文献   

9.
Transient cyclical methylation of promoter DNA   总被引:3,自引:0,他引:3  
  相似文献   

10.
A Ashworth  S Rastan  R Lovell-Badge  G Kay 《Nature》1991,351(6325):406-408
Only about 1% of human XO conceptuses survive to birth and these usually have the characteristics of Turner's syndrome, with a complex and variable phenotype including short stature, gonadal dysgenesis and anatomical defects. Both the embryonic lethality and Turner's syndrome are thought to be due to monosomy for a gene or genes common to the X and Y chromosomes. These genes would be expected to be expressed in females from both active and inactive X chromosomes to ensure correct dosage of gene product. Two genes with these properties are ZFX and RPS4X, both of which have been proposed to play a role in Turner's syndrome. In contrast to humans, mice that are XO are viable with no prenatal lethality (P. Burgoyne, personal communication) and are anatomically normal and fertile. We have devised a system to analyse whether specific genes on the mouse X chromosome are inactivated, and demonstrate that both Zfx and Rps4X undergo normal X-inactivation in mice. Thus the relative viability of XO mice compared to XO humans may be explained by differences between the two species in the way that dosage compensation of specific genes is achieved.  相似文献   

11.
Carrel L  Willard HF 《Nature》2005,434(7031):400-404
In female mammals, most genes on one X chromosome are silenced as a result of X-chromosome inactivation. However, some genes escape X-inactivation and are expressed from both the active and inactive X chromosome. Such genes are potential contributors to sexually dimorphic traits, to phenotypic variability among females heterozygous for X-linked conditions, and to clinical abnormalities in patients with abnormal X chromosomes. Here, we present a comprehensive X-inactivation profile of the human X chromosome, representing an estimated 95% of assayable genes in fibroblast-based test systems. In total, about 15% of X-linked genes escape inactivation to some degree, and the proportion of genes escaping inactivation differs dramatically between different regions of the X chromosome, reflecting the evolutionary history of the sex chromosomes. An additional 10% of X-linked genes show variable patterns of inactivation and are expressed to different extents from some inactive X chromosomes. This suggests a remarkable and previously unsuspected degree of expression heterogeneity among females.  相似文献   

12.
13.
In female (XX) mammals, one of the two X chromosomes is inactivated to ensure an equal dose of X-linked genes with males (XY). X-chromosome inactivation in eutherian mammals is mediated by the non-coding RNA Xist. Xist is not found in metatherians (marsupials), and how X-chromosome inactivation is initiated in these mammals has been the subject of speculation for decades. Using the marsupial Monodelphis domestica, here we identify Rsx (RNA-on-the-silent X), an RNA that has properties consistent with a role in X-chromosome inactivation. Rsx is a large, repeat-rich RNA that is expressed only in females and is transcribed from, and coats, the inactive X chromosome. In female germ cells, in which both X chromosomes are active, Rsx is silenced, linking Rsx expression to X-chromosome inactivation and reactivation. Integration of an Rsx transgene on an autosome in mouse embryonic stem cells leads to gene silencing in cis. Our findings permit comparative studies of X-chromosome inactivation in mammals and pose questions about the mechanisms by which X-chromosome inactivation is achieved in eutherians.  相似文献   

14.
15.
16.
17.
Localization of the X inactivation centre on the human X chromosome in Xq13   总被引:31,自引:0,他引:31  
X-chromosome inactivation results in the strictly cis-limited inactivation of many but not all genes on one of the two X chromosomes during early development in somatic cells of mammalian females. One feature of virtually all models of X inactivation is the existence of an X-inactivation centre (XIC) required in cis for inactivation to occur. This concept predicts that all structurally abnormal X chromosomes capable of being inactivated have in common a defineable region of the X chromosome. Here we report an analysis of several such rearranged human X chromosomes and define a minimal region of overlap. The results are consistent with models invoking a single XIC and provide a molecular foothold for cloning and analysing the XIC region. One of the markers that defines this region is the XIST gene, which is expressed specifically from inactive, but not active, X chromosomes. The localization of the XIST gene to the XIC region on the human X chromosome implicates XIST in some aspect of X inactivation.  相似文献   

18.
A I Lamond  A A Travers 《Nature》1983,305(5931):248-250
  相似文献   

19.
Regulation of heat shock protein 70 gene expression by c-myc   总被引:4,自引:0,他引:4  
R E Kingston  A S Baldwin  P A Sharp 《Nature》1984,312(5991):280-282
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号