首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Ti3SiC2 has the potential to replace graphite as reinforcing particles in Cu matrix composites for applications in brush,electrical contacts and electrode materials.In this paper the fabrication of Cu-Ti3SiC2 metal matrix composites prepared by warm compaction powder metallurgy forming and spark plasma sintering(SPS) was studied.The stability of Ti3SiC2 at different sintering temperatures was also studied.The present experimental results indicate that the reinforcing particles in Cu-Ti3SiC2 composites are not stable at and above 800℃.The decomposition of Ti3SiC2 will lead to the formation of TiC and/or other carbides and TiSi2.If purity is the major concern,the processing and servicing temperatures of the Cu-Ti3SiC2 composite should be limited to 750℃ or lower.The composites prepared by warm compaction forming and SPS sintering at 750℃ have lower density when compared with the composites prepared by SPS sintering at 950℃,but their electrical resistivity values are very close to each other and even lower.  相似文献   

2.
In order to improve the anti-oxidation of C/C composites, a SiC–MoSi2multi-phase coating for SiC coated carbon/carbon composites(C/C)was prepared by low pressure chemical vapor deposition(LPCVD) using methyltrichlorosilane(MTS) as precursor, combined with slurry painting from MoSi2 powder. The phase composition and morphology were analyzed by scanning electron microscope(SEM) and X-ray diffraction(XRD) methods, and the deposition mechanism was discussed. The isothermal oxidation and thermal shock resistance were investigated in a furnace containing air environment at 1500 1C. The results show that the as-prepared SiC–MoSi2coating consists of MoSi2 particles as a dispersing phase and CVD–SiC as a continuous phase. The weight loss of the coated samples is 1.51% after oxidation at 1500 1C for 90 h, and 4.79% after 30 thermal cycles between 1500 1C and room temperature. The penetrable cracks and cavities in the coating served as the diffusion channel of oxygen, resulted in the oxidation of C/C composites, and led to the weight loss in oxidation.  相似文献   

3.
A low cost chemical co-precipitation method was employed to fabricate nanoscale Al_2O_3-GdAlO_3-ZrO_2 powder with eutectic composition. A careful control of reaction conditions was required during the preparation. The synthesized nanopowders exhibited a particle size of 20-200 nm, and were highly dispersive and uniform. The results showed that calcination temperature had an important influence on the phase constituents of the nanopowders. With increasing the calcination temperature, a phase transformation from θ-Al_2O_3 to α-Al_2O_3 and a thermal decomposition from Gd_3 Al_5O_(12)(GdAG) to GdAlO_3 and α-Al_2O_3 occurred in sequence. A calcination temperature of 1300 ℃ was needed for the crystallization of α-Al_2 O_3. These nanosized powders were consolidated via hot pressing to produce a fully densified ceramic composite with eutectic composition. The Al_2O_3-GdAlO_3-ZrO_2 ceramic hot-pressed at 1500 ℃ exhibited a relative density of 99.4%, a flexural strength of 485 MPa and a fracture toughness of 6.5 MPa m~(1/2). The ceramic had a thermal conductivity of 1.9 W m K~(-1) at 1200 ℃ and a thermal expansion coefficient of 9.49 ×10~(-6) K~(-1) at 1100 ℃.  相似文献   

4.
Rare earth oxides doping has been extensively investigated as one of the effective methods to lower thermal conductivity of 4.55 mol% Y2O3stabilized ZrO2(YSZ) thermal barrier coatings(TBCs).In the present work,5–6 mol% Yb2O3and Y2O3co-doped ZrO2ceramics were synthesized by solid reaction sintering at 1600 1C.The phase stability of the samples after heat treatment at 1500 1C was investigated.Yb2O3and Y2O3co-doped zirconia,especially when Yb2O3/Y2O3≥1,contained less monoclinic phase than single Yb2O3or Y2O3phase doped zirconia,indicating that co-doped zirconia was more stable at high temperature than YSZ.The thermal conductivity of the 3 mol% Yb2O3+3 mol% Y2O3co-doped ZrO2was 1.8 W m 1K 1at 1000 1C,which was more than 20% lower than that of YSZ.  相似文献   

5.
Cu-Ni-Si alloys are widely used due to their good electrical conductivities in combination with high strength and hardness. In the present work, minor-alloying with M =(Cr, Fe, Mo, Zr) was conducted for the objective of further improving their hardness while maintaining their conductivity level. A cluster-plus-glue-atom model was introduced to design the compositions of M-alloyed Cu-Ni-Si alloys, in which an ideal composition formula[(Ni,Si,M)-Cu_(12)]Cu_3(molar proportion) was proposed. To guarantee the complete precipitation of solute elements in fine δ-Ni_2 Si precipitates, the atomic ratio of(Ni,M)/Si was set as 2/1. Thus the designed alloy series of Cu_(93.75)(Ni/Zr)_(3.75)Si_(2.08)(Cr/Fe/Mo)_(0.42)(at%) were arc-melted into ingots under argon atmosphere, and solidsolutioned at 950 ℃ for 1 h plus water quenching and then aged at 450 ℃ for different hours. The experimental results showed that these designed alloys exhibit high hardness(HV 1.7 GPa) and good electrical conductivities(≥ 35% IACS). Specifically, the quinary Cu_(93.75)Ni_(3.54)Si_(2.08)(Cr/Fe)_(0.42)Zr_(0.21) alloys(Cu-3.32 Ni-0.93 Si-0.37(Cr/Fe)-0.30 Zr wt%) possess both a high hardness with HV = 2.5-2.7 GPa, comparable to the highstrength KLFA85 alloy(Cu-3.2 Ni-0.7 Si-1.1 Zn wt%,HV= 2.548 GPa),and a good electrical conductivity(35-36% IACS).  相似文献   

6.
In this paper,novel electric conductive polylactide/carbon nanotubes(PLA/CNTs) foams were fabricated by a pressure-quench process using supercritical CO2as a blowing agent.The morphology of PLA/CNTs nanocomposites prepared by solution blending was characterized using SEM and the results indicate that CNTs well dispersed in PLA matrix.The introduction of CNTs improved the thermal stability of PLA.The morphology and electrical properties of PLA/CNTs foams were characterized and discussed.Depending on the process parameters,such as saturation temperature and pressure,nanocellular or microcellular structure of PLA/CNTs nanocomposites were obtained.The volume resistivity of PLA/CNTs foams was from 0.53 103Ω cm to 15.13 103Ω cm,which was affected by cell structure and crystallization of foams oppositely.Foaming reduced the electrical conductivity due to the decrease of CNTs volume content and the break of conductive pathways.However,crystallization increased the electrical conductivity possibly because of the CNTs structural change in which the CNTs were less curled and more connected.  相似文献   

7.
The elastic constants,bulk modulus,shear modulus,Young’s modulus,Debye temperature,isobaric heat capacity and minimum thermal conductivity are estimated for NpO2 using plane-wave pseudopotential method within the local spin density approximation plus Hubbard U(LSDAtU) theory.The computed lattice constants are in good agreement with the available experimental results and then three independent elastic constants were computed by means of the stress–strain method.From the knowledge of the elastic constants,the values of Young’s modulus,Poisson,Debye temperature and minimum thermal conductivity are obtained and they are 218 GPa,0.288,453.5 K and0.99 Wm-1K-1,respectively.The obtained mechanical and thermal properties of NpO2 are in agreement with the previous experimental and theoretical data.Our investigations which are unobtainable from previous report can provide valuable reference in the future.  相似文献   

8.
MgCo_2 and MgNiCo crystallize with hexagonal Laves type intermetallic structures of the C14 type and do not form hydrides at ambient hydrogen pressures. However, applying high hydrogen pressures in the GPa range forces the hydrogen absorption and leads to the formation of multi-phase compositions, which contain approximately 2.5 atoms H per formula unit of MgCo_2 or MgNiCo and remain thermally stable under normal conditions.The hydrogenation of MgCo_2 resulted in its decomposition to a ternary Mg_2CoD_5 deuteride and metallic cobalt. Phase-structural transformations accompanying the vacuum desorption of deuterium in the temperature range of 27–500 °C were studied using in situ neutron powder diffraction. The investigation showed a complete recovery of the initial MgCo_2 intermetallic via a Hydrogenation-Disproportionation-Desorption-Recombination process. At 300°C, the Mg_2CoD_5 deuteride first decomposed to elementary Mg and hexagonal Co. At 400°C, a MgCo phase was formed by interaction between Mg and Co. At the highest processing temperature of 500°C, a solid-state interaction of MgCo and Co resulted in the recovery of the initial MgCo_2.The interaction of MgNiCo with deuterium under the synthesis conditions of 2.8 GPa and 200 °C proceeded in a more complex way. A very stable ternary deuteride MgNi_2D_3 was leached away while Co was separated in the form of Mg_2CoD_5 and the remaining nickel formed a solid solution with Co with the approximate composition Ni_(0.7)Co_(0.3).The thermal desorption of deuterium from MgCo_2D_(2.5) and from MgNiCoD_(2.5) has been studied by Thermal Desorption Spectroscopy with deuterium released into a closed volume. The observed effects nicely correlate with changes in the phase structural composition of the hydrides formed.MgCo_2 is a new example of the hydrogen storage alloy, in which a successful HDDR processing results in the reversible formation of the initial intermetallic at much lower temperatures than in the equilibrium phase diagram of the Mg-Co system.  相似文献   

9.
Synthesis and consolidation behavior of Cu–8 at%Cr alloy powders made by mechanical alloying with elemental Cu and Cr powders,and subsequently,compressive and electrical properties of the consolidated alloys were studied.Solid solubility of Cr in Cu during milling,and subsequent phase transformations during sintering and heat treatment of sintered components were analyzed using X-ray diffraction,scanning electron microscopy and transmission electron microscopy.The milled powders were compacted applying three different pressures(200 MPa,400 MPa and 600 MPa)and sintered in H2atmosphere at 900 1C for 30 min and at 1000 1C for 1 h and 2 h.The maximum densification(92.8%)was achieved for the sample compacted at 600 MPa and sintered for 1000 1C for 2 h.Hardness and densification behavior further increased for the compacts sintered at 900 1C for 30 min after rolling and annealing process.TEM investigation of the sintered compacts revealed the bimodal distribution of Cu grains with nano-sized Cr and Cr2O3precipitation along the grain boundary as well as in grain interior.Pinning of grain boundaries by the precipitates stabilized the fine grain structure in bimodal distribution.  相似文献   

10.
The frequency-dependent dielectric dispersion of ZnO–Na2O–Al2O3–B2O3(in mol%) glass prepared by the melt quenching technique is investigated in the temperatur e ranges from room temperature to 420 K. Dielectric relaxation has been analyzed based on the behavior of electric modulus behavior. An analysis of the real and imaginary parts of dielectric is performed assuming the ideal Debye behavior as confirmed by Cole–Cole plot. The activation energy associated with the dielectric relaxation determined from the electric modulus spectra was found to be 1.863 eV, which is close to that the activation energy for d.c. conductivity (1.871 eV), indicating the similar nature of relaxation and conductivity.  相似文献   

11.
Al2O3 –TiC/TiCN–Fe composite powders were successfully prepared directly from ilmenite at 1300–1400℃.The effects of Al/C ratio,sintering atmosphere,and reaction temperature and time on the reaction products were investigated.Results showed that the nitrogen atmosphere was bene cial to the reduction of ilmenite and the formation of Al2O3 –TiC/TiCN–Fe composite powders.When the reaction temperature was between 600 and 1100℃,the intermediate products,TiO2,Ti3O5 and Ti4O7 were found,which changed to TiC or TiCN at higher temperature.Al/C ratio was found to affect the reaction process and synthesis products.When Al addition was 0.5 mol,the Al2O3 phase did not appear.The content of carbon in TiCN rose when the reaction temperature was increased.  相似文献   

12.
CuO-doped CaSiO3–1 wt% Al2O3 ceramics were synthesized via a traditional solid-state reaction method, and their sintering behavior,microstructure and microwave dielectric properties were investigated. The results showed that appropriate CuO addition could accelerate the sintering process and assist the densification of CaSiO3–1 wt% Al2O3 ceramics, which could effectively lower the densification temperature from1250 1C to 1050 1C. However, the addition of CuO undermined the microwave dielectric properties. The optimal amount of CuO addition was found to be 0.8 wt%, and the derived CaSiO3–Al2O3ceramic sintered at 1100 1C presented good microwave dielectric properties of εr?7.27,Q f?16,850 GHz and τf? 39.53 ppm/1C, which is much better than those of pure CaSiO3 ceramic sintered at 1340oC(Q f?13,109 GHz).The chemical compatibility of the above ceramic with 30 Pd/70 Ag during the cofiring process has also been investigated, and the result showed that there was no chemical reaction between palladium–silver alloys and ceramics.& 2014 Chinese Materials Research Society. Production and hosting by Elsevier B.V. All rights reserved.  相似文献   

13.
Ti_(50)Zr_(27)Cu_8Ni_4Co_3Fe_2Al_3Sn_3(at%) amorphous filler metal with low Cu and Ni contents in a melt-spun ribbon form was developed for improving mechanical properties of Ti–6Al–4V alloy brazing joint through decreasing brittle intermetallics in the braze zone. Investigation on the crystallization behavior of the multicomponent Ti–Zr–Cu–Ni–Co–Fe–Al–Sn amorphous alloy indicates the high stability of the supercooled liquid against crystallization that favors the formation of amorphous structure. The Ti–6Al–4V joint brazed with this Ti-based amorphous filler metal with low total content of Cu and Ni at 1203K for 900s mainly consists of α-Ti, β-Ti,minor Ti–Zr-rich phase and only a small amount of Ti_3Cu intermetallics, leading to the high shear strength of the joint of about 460 MPa. Multicomponent composition design of amorphous alloys is an effective way of tailoring filler metals for improving the joint strength.  相似文献   

14.
Photocatalyst, lead sulfide (PbS )-intercalated layer perovskite-type compound (K2La2Ti3O10), was synthesized via ion-exchange reaction, butylamine pillaring and sulfuration processes under the assistance of the microwave irradiation. The structure of the photoc atalysts was determined by means of powder X-ray diffraction, scanning electron microscope, ultraviolet- visible diffuse reflection spectra and photoluminescence measu rement. And the photocatalytic activity of the composite compound for hydrogen production was also investigated. The experimental results showed that the intercalation of PbS in the layered space of K2La2Ti3O10 greatly improved the absorption edge and the photocatalytic activity. Hydrogen production of the PbS–K2La2Ti3O10 was 127.19 mmol/(g cat) after 3 h irradiation of ultraviolet light.  相似文献   

15.
The ternary magnesium hydride NaMgH 3 has been synthesised via reactive milling techniques.The method employed neither a reactive H2 atmosphere nor high pressure sintering or other post-treatment processes.The formation of the ternary hydride was studied as a function of milling time and ball:powder ratio.High purity NaMgH 3 powder(orthorhombic space group Pnma,a 5.437(2),b 7.705(5),c 5.477(2) ;Z 4) was prepared in 5 h at high ball:powder ratios and characterised by powder X-ray diffraction(PXD),Raman spectroscopy and scanning electron microscopy/energy dispersive X-ray spectroscopy(SEM/EDX).The products formed sub-micron scale(typically 200-400 nm in size) crystallites that were approximately isotropic in shape.The dehydrogenation behaviour of the ternary hydride was investigated by temperature programmed desorption(TPD).The nanostructured hydride releases hydrogen in two steps with an onset temperature for the first step of 513 K.  相似文献   

16.
The electrical resistivity of the as-consolidated and coarse-grained bulk gadolinium(Gd) metals was studied in the temperature range of 3-315K.The experimental results showed that with decrease in the grain size of Gd grains from micrometer to nanometer range,the room temperature electrical resistivity increased from 209.7 to 333.0 μΩcm,while the electrical resistivity at the low temperature of 3K was found to increase surprisingly from 16.5 to 126.3 μΩcm.The room temperature coefficient resistivity(TCR) values were obtained as 39.2×10-3,5.51×10-3 and 33.7×10-3K-1.The ratios of room temperature to residual resistivity [RRR=ρ(300K)/ρ(3K)] are 2.64,11.0,respectively,for the as-consolidated samples at 280℃ and 700℃ with respect to that of the coarse-grained sample.All results indicate the remarkable influence of the nanostructure on the electrical resistivity of Gd due to the finite size effect and large fraction of grain boundaries.  相似文献   

17.
The(Ti_(0.85)Zr_(0.15))_(1.05)Mn_(1.2)Cr_(0.6)V_(0.1)M_(0.1)(M=Ni, Fe, Cu) alloys with a single C14-type Laves phase have been fabricated by arc melting. They are able to be easily activated by one hydrogen absorption and desorption cycle under 4 MPa hydrogen pressure and vacuum at room temperature. Partial substitution of M for Mn results in the increase of hydrogenation and dehydrogenation capacities in an order of Ni Fe Cu. M elements increase the absorption and desorption plateau pressure in an order of(Ti_(0.85)Zr_(0.15))_(1.05)Mn_(1.2)Cr_(0.6)V_(0.1)Cu_(0.1)(Ti_(0.85)Zr_(0.15))_(1.05)Mn_(1.2)Cr_(0.6)V_(0.1)Fe_(0.1)(Ti_(0.85)Zr_(0.15))_(1.05)Mn_(1.2)Cr_(0.6)V_(0.1)Ni_(0.1). The(Ti_(0.85)Zr_(0.15))_(1.05)Mn_(1.2)Cr_(0.6)V_(0.1)Cu_(0.1) alloy has reversible hydrogen capacities of 1.81 wt% at 273 K and 1.58 wt% at 318 K with formation enthalpy(ΔH_(ab)) of-20.66 kJ mol~(-1) and decomposition enthalpy(ΔH_(de)) of 27.37 kJ mol~(-1). The differences in the hydrogen storage properties can be attributed to the increase of the interstitial size for hydrogen accommodation caused by the increase of unit cell volumes in the order of(Ti_(0.85)Zr_(0.15))_(1.05)Mn_(1.2)Cr_(0.6)V_(0.1)Ni_(0.1)(Ti_(0.85)Zr_(0.15))_(1.05)Mn_(1.2)Cr_(0.6)V_(0.1)Fe_(0.1)(Ti_(0.85)Zr_(0.15))_(1.05)Mn_(1.2)Cr_(0.6)V_(0.1)Cu_(0.1).  相似文献   

18.
Ternary mixed metal oxide coatings with the nominal composition IrxRu(0.6-x)Ti0.4O2(x=0, 0.1, 0.2, 0.3) on the titanium substrate were prepared by thermal decomposition of a chloride precursor mixture. Surface morphology and microstructure of the coatings were investigated by Scanning electron microscopy(SEM), Field emission scanning electron microscopy(FE-SEM) and X-ray diffraction(XRD) analysis. Systematic study of electrochemical properties of these coatings was performed by cyclic voltammetry(CV) and polarization measurements. The corrosion behavior of the coatings was evaluated under accelerated conditions(j=2 A cm-2) in acidic electrolyte. The role of iridium oxide admixture in the change of electrocatalytic activity and stability of Ru0.6Ti0.4O2coating was discussed. Small addition of IrO2can improve the stability of the RuO2+TiO2mixed oxide, while the electrocatalytic activity for oxygen evolution reaction(OER) is decreased. The shift of redox potentials for Ru0.6Ti0.4O2electrode that is slightly activated with IrO2and improvement in the stability can be attributed to the synergetic effect of mixed oxide formation.  相似文献   

19.
Ni based amorphous materials have great potential as hydrogen purification membranes. In the present work the melt spun(Ni_(0.6)Nb_(0.4-y)Ta_y)_(100-x)Zr_x with y=0, 0.1 and x=20, 30 was studied. The result of X-ray diffraction spectra of the ribbons showed an amorphous nature of the alloys. Heating these ribbons below T 400 °C, even in a hydrogen atmosphere(1-10 bar), the amorphous structure was retained. The crystallization process was characterized by differential thermal analysis and the activation energy of such process was obtained. The hydrogen absorption properties of the samples in their amorphous state were studied by the volumetric method,and the results showed that the addition of Ta did not significantly influence the absorption properties, a clear change of the hydrogen solubility was observed with the variation of the Zr content. The values of the hydrogenation enthalpy changed from ~37 k J/mol for x=30 to ~9 k J/mol for x=20. The analysis of the volumetric data provides the indications about the hydrogen occupation sites during hydrogenation, suggesting that at the beginning of the absorption process the deepest energy levels are occupied, while only shallower energy levels are available at higher hydrogen content, with the available interstitial sites forming a continuum of energy levels.  相似文献   

20.
Nickel-based superalloy DZ125 was first sprayed with a NiCrAlY bond coat and followed with a nanostructured 2 mol% Gd_2O_3-4.5 mol% Y_2 O_3-ZrO_2(2 GdYSZ) topcoat using air plasma spraying(APS). Hot corrosion behavior of the as-sprayed thermal barrier coatings(TBCs) were investigated in the presence of 50 wt%Na_2SO_4 + 50 wt% V_2O_5 as the corrosive molten salt at 900 ℃ for 100 h. The analysis results indicate that Gd doped YVO_4 and m-ZrO_2 crystals were formed as corrosion products due to the reaction of the corrosive salts with stabilizers(Y_2O_3, Gd_2O_3) of zirconia. Cross-section morphology shows that a thin layer called TGO was formed at the bond coat/topcoat interface. After hot corrosion test, the proportion of m-ZrO_2 phase in nanostructured 2GdYSZ coating is lower than that of nano-YSZ coating. The result reveals that nanostructured 2GdYSZ coating exhibits a better hot corrosion resistance than nano-YSZ coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号