首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional regeneration of sensory axons into the adult spinal cord   总被引:34,自引:0,他引:34  
Ramer MS  Priestley JV  McMahon SB 《Nature》2000,403(6767):312-316
The arrest of dorsal root axonal regeneration at the transitional zone between the peripheral and central nervous system has been repeatedly described since the early twentieth century. Here we show that, with trophic support to damaged sensory axons, this regenerative barrier is surmountable. In adult rats with injured dorsal roots, treatment with nerve growth factor (NGF), neurotrophin-3 (NT3) and glial-cell-line-derived neurotrophic factor (GDNF), but not brain-derived neurotrophic factor (BDNF), resulted in selective regrowth of damaged axons across the dorsal root entry zone and into the spinal cord. Dorsal horn neurons were found to be synaptically driven by peripheral nerve stimulation in rats treated with NGF, NT3 and GDNF, demonstrating functional reconnection. In behavioural studies, rats treated with NGF and GDNF recovered sensitivity to noxious heat and pressure. The observed effects of neurotrophic factors corresponded to their known actions on distinct subpopulations of sensory neurons. Neurotrophic factor treatment may thus serve as a viable treatment in promoting recovery from root avulsion injuries. I  相似文献   

2.
Adaptation in the chemotactic guidance of nerve growth cones   总被引:14,自引:0,他引:14  
Ming GL  Wong ST  Henley J  Yuan XB  Song HJ  Spitzer NC  Poo MM 《Nature》2002,417(6887):411-418
Pathfinding by growing axons in the developing nervous system may be guided by gradients of extracellular guidance factors. Analogous to the process of chemotaxis in microorganisms, we found that axonal growth cones of cultured Xenopus spinal neurons exhibit adaptation during chemotactic migration, undergoing consecutive phases of desensitization and resensitization in the presence of increasing basal concentrations of the guidance factor netrin-1 or brain-derived neurotrophic factor. The desensitization is specific to the guidance factor and is accompanied by a reduction of Ca2+ signalling, whereas resensitization requires activation of mitogen-associated protein kinase and local protein synthesis. Such adaptive behaviour allows the growth cone to re-adjust its sensitivity over a wide range of concentrations of the guidance factor, an essential feature for long-range chemotaxis.  相似文献   

3.
R Raisman  M Briley  S Z Langer 《Nature》1979,281(5727):148-150
The discovery of high-affinity binding sites for psychoactive drugs such as benzodiazepines, opiates and neuroleptics has opened up new approaches to the study of these drugs and their mechanisms of action. Although most tricyclic antidepressants inhibit neuronal uptake of noradrenaline and serotonin, their mechanism of action remains unclear. Changes in the sensitivity of the beta-receptor after chronic tricyclic antidepressant treatment suggest that they modulate noradrenergic neurotransmission. Tricyclic antidepressants also act directly on cholinergic, histaminergic, alpha-adrenergic and serotonergic receptors. It is not clear, however, which, if any, of these effects are related to the primary antidepressant effect or whether they are simply responsible for some of the side effects. We have thus investigated the possibility that specific binding sites for tricyclic antidepressants exist in the central nervous system. So far, binding studies using 3H-labelled tricyclic antidepressant drugs have only detected binding to histaminergic H2 and cholinergic muscarinic receptors and low-affinity binding. We demonstrate here a population of specific high-affinity binding sites for 3H-imipramine on brain membranes which may be responsible for the antidepressant effects of these drugs.  相似文献   

4.
Rose CR  Blum R  Pichler B  Lepier A  Kafitz KW  Konnerth A 《Nature》2003,426(6962):74-78
The neurotrophin receptor TrkB is essential for normal function of the mammalian brain. It is expressed in three splice variants. Full-length receptors (TrkB(FL)) possess an intracellular tyrosine kinase domain and are considered as those TrkB receptors that mediate the crucial effects of brain-derived neurotrophic factor (BDNF) or neurotrophin 4/5 (NT-4/5). By contrast, truncated receptors (TrkB-T1 and TrkB-T2) lack tyrosine kinase activity and have not been reported to elicit rapid intracellular signalling. Here we show that astrocytes predominately express TrkB-T1 and respond to brief application of BDNF by releasing calcium from intracellular stores. The calcium transients are insensitive to the tyrosine kinase blocker K-252a and persist in mutant mice lacking TrkB(FL). By contrast, neurons produce rapid BDNF-evoked signals through TrkB(FL) and the Na(v)1.9 channel. Expression of antisense TrkB messenger RNA strongly reduces BDNF-evoked calcium signals in glia. Thus, our results show that, unexpectedly, TrkB-T1 has a direct signalling role in mediating inositol-1,4,5-trisphosphate-dependent calcium release; in addition, they identify a previously unknown mechanism of neurotrophin action in the brain.  相似文献   

5.
Nerve growth factor (NGF) is a member of an expanding family of neurotrophic factors (including brain-derived neurotrophic factor and the neurotrophins) that control the development and survival of certain neuronal populations both in the peripheral and in the central nervous systems. Its biological effects are mediated by a high-affinity ligand-receptor interaction and a tyrosine kinase signalling pathway. A potential use for NGF and its relatives in the treatment of neurological disorders such as Alzheimer's disease and Parkinson's disease requires an understanding of the structure-function relationships of NGF. NGF is a dimeric molecule, with 118 amino acids per protomer. We report the crystal structure of the murine NGF dimer at 2.3-A resolution, which reveals a novel protomer structure consisting of three antiparallel pairs of beta strands, together forming a flat surface. Two subunits associate through this surface, thus burying a total of 2,332 A. Four loop regions, which contain many of the variable residues observed between different NGF-related molecules, may determine the different receptor specificities. A clustering of positively charged side chains may provide a complementary interaction with the acidic low-affinity NGF receptor. The structure provides a model for rational design of analogues of NGF and its relatives and for testing the NGF-receptor recognition determinants critical for signal transduction.  相似文献   

6.
Neurotrophin-evoked rapid excitation through TrkB receptors.   总被引:27,自引:0,他引:27  
K W Kafitz  C R Rose  H Thoenen  A Konnerth 《Nature》1999,401(6756):918-921
Neurotrophins are a family of structurally related proteins that regulate the survival, differentiation and maintenance of function of different populations of peripheral and central neurons. They are also essential for modulating activity-dependent neuronal plasticity. Here we show that neurotrophins elicit action potentials in central neurons. Even at low concentrations, brain-derived neurotrophic factor (BDNF) excited neurons in the hippocampus, cortex and cerebellum. We found that BDNF and neurotrophin-4/5 depolarized neurons just as rapidly as the neurotransmitter glutamate, even at a more than thousand-fold lower concentration. Neurotrophin-3 produced much smaller responses, and nerve growth factor was ineffective. The neurotrophin-induced depolarization resulted from the activation of a sodium ion conductance which was reversibly blocked by K-252a, a protein kinase blocker which prefers tyrosine kinase Trk receptors. Our results demonstrate a very rapid excitatory action of neurotrophins, placing them among the most potent endogenous neuro-excitants in the mammalian central nervous system described so far.  相似文献   

7.
Molecular cloning and expression of brain-derived neurotrophic factor   总被引:123,自引:0,他引:123  
During the development of the vertebrate nervous system, many neurons depend for survival on interactions with their target cells. Specific proteins are thought to be released by the target cells and to play an essential role in these interactions. So far, only one such protein, nerve growth factor, has been fully characterized. This has been possible because of the extraordinarily (and unexplained) large quantities of this protein in some adult tissues that are of no relevance to the developing nervous system. Whereas the dependency of many neurons on their target cells for normal development, and the restricted neuronal specificity of nerve growth factor have long suggested the existence of other such proteins, their low abundance has rendered their characterization difficult. Here we report the full primary structure of brain-derived neurotrophic factor. This very rare protein is known to promote the survival of neuronal populations that are all located either in the central nervous system or directly connected with it. The messenger RNA for brain-derived neurotrophic factor was found predominantly in the central nervous system, and the sequence of the protein indicates that it is structurally related to nerve growth factor. These results establish that these two neurotrophic factors are related both functionally and structurally.  相似文献   

8.
R W Oppenheim  Q W Yin  D Prevette  Q Yan 《Nature》1992,360(6406):755-757
During normal vertebrate development, about half of spinal motoneurons are lost by a process of naturally occurring or programmed cell death. Additional developing motoneurons degenerate after the removal of targets or afferents. Naturally occurring motoneuron death as well as motoneuron death after loss of targets or after axotomy can be prevented by in vivo treatment with putative target (muscle) derived or other neurotrophic agents. Motoneurons can also be prevented from dying in vitro and in vivo (Y.Q.-W., R.W., D.P., J. Johnson and L. Van Eldik, unpublished data and refs 7, 13, 14) by treatment with central nervous system extracts (brain or spinal cord) and purified central nervous system and glia-derived proteins. Here we report that in vivo treatment of chick embryos with brain-derived neurotrophic factor rescues motoneurons from naturally occurring cell death. Furthermore, in vivo treatment with brain-derived neurotrophic factor (and nerve growth factor) also prevents the induced death of motoneurons that occurs following the removal of descending afferent input (deafferentation). These data indicate that members of the neurotrophin family can promote the survival of developing avian motoneurons.  相似文献   

9.
Activin is a nerve cell survival molecule   总被引:22,自引:0,他引:22  
The structures of five neurotrophic molecules have so far been published. Nerve growth factor, fibroblast growth factor and purpurin, have been identified as nerve-cell survival molecules. More recently, brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor have been cloned and sequenced. As all these proteins stimulate the survival of ciliary or sensory neurons, a new cell survival assay is required if novel neurotrophic molecules are to be discovered. P19 teratoma cells differentiate to nerve-like cells in the presence of 5 x 10(-7) M retinoic acid (RA). But when P19 cells are plated in N2 synthetic medium without being exposed to RA, they die within 48 h. In an attempt to identify a molecule(s) that can substitute for RA in promoting P19 survival, we assayed serum-free growth-conditioned media for their ability to promote P19 survival. One cell line from the rat eye secreted a molecule that promoted the survival of P19 cells and some types of nerve cell. We identified this molecule as activin, better known for its role in hormone secretion.  相似文献   

10.
为探讨坚果(核桃与甜杏仁)在抑郁症中的预防作用和机制.采用慢性温和不可预测应激(CMS)大鼠模型模拟抑郁症,对大鼠进行强迫游泳(FST)、糖水消耗的抑郁症行为学测试,并运用ELISA 试剂盒测定大鼠血浆皮质酮(CORT)含量,Western blot 法检测大鼠海马部脑源性营养因子(BDNF)、蛋白激酶A(PKA)和蛋白激酶C(PKC)的蛋白表达.实验结果表明,模型组FST、糖水消耗的行为学成绩明显低于正常对照组(P<0.05),预先给予坚果各剂量(60 g·kg-1、120 g·kg-1、240 g·kg-1),可改善抑郁症大鼠的行为学成绩,提示,食用坚果可延缓抑郁症症状.血浆CORT水平测定结果显示,模型组血浆CORT含量显著高于正常对照组(P<0.05),但坚果各剂量组对血浆CORT含量无影响(P>0.05),提示,坚果产生延缓抑郁发生的机制可能与作用CORT途径无关联.对大鼠海马部的BDNF、PKA和PKC蛋白表达测定显示,模型组BDNF、PKA和PKC的蛋白表达均低于正常对照组(P < 0.05),而经预先给与坚果的各剂量坚果组,则拮抗了模型组BDNF、PKA和PKC蛋白表达水平的下降(P<0.05).提示,坚果在预防抑郁症作用机制可能与激活PKA、PKC激酶和增强BDNF蛋白水平的信号通路有关.因此,本实验结果初步明确,预先食用坚果可有助于延缓抑郁症的产生.这将为后续食用坚果类食物在预防抑郁症中的研究提供了一定的理论和实验依据.  相似文献   

11.
Elongation factor eEF3 is an ATPase that, in addition to the two canonical factors eEF1A and eEF2, serves an essential function in the translation cycle of fungi. eEF3 is required for the binding of the aminoacyl-tRNA-eEF1A-GTP ternary complex to the ribosomal A-site and has been suggested to facilitate the clearance of deacyl-tRNA from the E-site. Here we present the crystal structure of Saccharomyces cerevisiae eEF3, showing that it consists of an amino-terminal HEAT repeat domain, followed by a four-helix bundle and two ABC-type ATPase domains, with a chromodomain inserted in ABC2. Moreover, we present the cryo-electron microscopy structure of the ATP-bound form of eEF3 in complex with the post-translocational-state 80S ribosome from yeast. eEF3 uses an entirely new factor binding site near the ribosomal E-site, with the chromodomain likely to stabilize the ribosomal L1 stalk in an open conformation, thus allowing tRNA release.  相似文献   

12.
M Sendtner  B Holtmann  R Kolbeck  H Thoenen  Y A Barde 《Nature》1992,360(6406):757-759
Motoneurons innervating the skeletal musculature were among the first neurons shown to require the presence of their target cells to develop appropriately. But the characterization of molecules allowing motoneuron survival has been difficult. Ciliary neurotrophic factor prevents the death of motoneurons, but its gene is not expressed during development. Although the presence of a neurotrophin receptor on developing motoneurons has suggested a role for neurotrophins, none could be shown to promote motoneuron survival in vitro. We report here that brain-derived neurotrophic factor can prevent the death of axotomized motoneurons in newborn rats, suggesting a role for this neurotrophin for motoneuron survival in vivo.  相似文献   

13.
Brain-derived neurotrophic factor prevents neuronal death in vivo   总被引:32,自引:0,他引:32  
M M Hofer  Y A Barde 《Nature》1988,331(6153):261-262
Developing vertebrate neurons are thought to depend for their survival on specific neurotrophic proteins present in their target fields. The limited availability of these proteins does not allow the survival of all neurons initially innervating a target, resulting in the widely observed phenomenon of naturally occurring neuronal death. Although a variety of proteins have been reported to promote the survival of neurons in tissue culture, the demonstration that these proteins increase neuronal numbers and/or decrease neuronal death in vivo has only been possible with nerve growth factor (NGF). The generalization of the concept that neurotrophic proteins regulate neuronal survival during normal development critically depends on the demonstration that the survival of neurons in vivo can be increased by the administration of a neurotrophic protein different from NGF. We report here that this is the case with brain-derived neurotrophic factor, a protein of extremely low abundance purified from the central nervous system.  相似文献   

14.
曾伟楠 《科技信息》2009,(19):384-385
目的:探讨父母教养方式对子女抑郁障碍产生的影响机制,研究抑郁障碍患者的自我图式特点及其跟父母教养方式的关系以及对抑郁障碍产生的影响。方法:分抑郁组和对照组,采用父母教养方式量表、自我图式问卷和抑郁自评量表对被试进行调查。结论:1.抑郁障碍患者父母教养方式倾向于缺少情感上的温暖和理解.过多的严厉惩罚和拒绝否认。2.抑郁障碍患者的自我图式表现出更多的回避性、强迫性和依赖性。3.抑郁障碍患者的自我图式和父母教养方式存在显著相关。  相似文献   

15.
A brain-specific microRNA regulates dendritic spine development   总被引:6,自引:0,他引:6  
MicroRNAs are small, non-coding RNAs that control the translation of target messenger RNAs, thereby regulating critical aspects of plant and animal development. In the mammalian nervous system, the spatiotemporal control of mRNA translation has an important role in synaptic development and plasticity. Although a number of microRNAs have been isolated from the mammalian brain, neither the specific microRNAs that regulate synapse function nor their target mRNAs have been identified. Here we show that a brain-specific microRNA, miR-134, is localized to the synapto-dendritic compartment of rat hippocampal neurons and negatively regulates the size of dendritic spines--postsynaptic sites of excitatory synaptic transmission. This effect is mediated by miR-134 inhibition of the translation of an mRNA encoding a protein kinase, Limk1, that controls spine development. Exposure of neurons to extracellular stimuli such as brain-derived neurotrophic factor relieves miR-134 inhibition of Limk1 translation and in this way may contribute to synaptic development, maturation and/or plasticity.  相似文献   

16.
17.
Krishnan V  Nestler EJ 《Nature》2008,455(7215):894-902
Unravelling the pathophysiology of depression is a unique challenge. Not only are depressive syndromes heterogeneous and their aetiologies diverse, but symptoms such as guilt and suicidality are impossible to reproduce in animal models. Nevertheless, other symptoms have been accurately modelled, and these, together with clinical data, are providing insight into the neurobiology of depression. Recent studies combining behavioural, molecular and electrophysiological techniques reveal that certain aspects of depression result from maladaptive stress-induced neuroplastic changes in specific neural circuits. They also show that understanding the mechanisms of resilience to stress offers a crucial new dimension for the development of fundamentally novel antidepressant treatments.  相似文献   

18.
The bacteria causing diphtheria, whooping cough, cholera and other diseases secrete mono-ADP-ribosylating toxins that modify intracellular proteins. Here, we describe four structures of a catalytically active complex between a fragment of Pseudomonas aeruginosa exotoxin A (ETA) and its protein substrate, translation elongation factor 2 (eEF2). The target residue in eEF2, diphthamide (a modified histidine), spans across a cleft and faces the two phosphates and a ribose of the non-hydrolysable NAD+ analogue, betaTAD. This suggests that the diphthamide is involved in triggering NAD+ cleavage and interacting with the proposed oxacarbenium intermediate during the nucleophilic substitution reaction, explaining the requirement of diphthamide for ADP ribosylation. Diphtheria toxin may recognize eEF2 in a manner similar to ETA. Notably, the toxin-bound betaTAD phosphates mimic the phosphate backbone of two nucleotides in a conformational switch of 18S rRNA, thereby achieving universal recognition of eEF2 by ETA.  相似文献   

19.
Pascoli V  Turiault M  Lüscher C 《Nature》2012,481(7379):71-75
Drug-evoked synaptic plasticity is observed at many synapses and may underlie behavioural adaptations in addiction. Mechanistic investigations start with the identification of the molecular drug targets. Cocaine, for example, exerts its reinforcing and early neuroadaptive effects by inhibiting the dopamine transporter, thus causing a strong increase in mesolimbic dopamine. Among the many signalling pathways subsequently engaged, phosphorylation of the extracellular signal-regulated kinase (ERK) in the nucleus accumbens is of particular interest because it has been implicated in NMDA-receptor and type 1 dopamine (D1)-receptor-dependent synaptic potentiation as well as in several behavioural adaptations. A causal link between drug-evoked plasticity at identified synapses and behavioural adaptations, however, is missing, and the benefits of restoring baseline transmission have yet to be demonstrated. Here we find that cocaine potentiates excitatory transmission in D1-receptor-expressing medium-sized spiny neurons (D1R-MSNs) in mice via ERK signalling with a time course that parallels locomotor sensitization. Depotentiation of cortical nucleus accumbens inputs by optogenetic stimulation in vivo efficiently restored normal transmission and abolished cocaine-induced locomotor sensitization. These findings establish synaptic potentiation selectively in D1R-MSNs as a mechanism underlying a core component of addiction, probably by creating an imbalance between distinct populations of MSNs in the nucleus accumbens. Our data also provide proof of principle that reversal of cocaine-evoked synaptic plasticity can treat behavioural alterations caused by addictive drugs and may inspire novel therapeutic approaches involving deep brain stimulation or transcranial magnetic stimulation.  相似文献   

20.
Won H  Lee HR  Gee HY  Mah W  Kim JI  Lee J  Ha S  Chung C  Jung ES  Cho YS  Park SG  Lee JS  Lee K  Kim D  Bae YC  Kaang BK  Lee MG  Kim E 《Nature》2012,486(7402):261-265
Autism spectrum disorder (ASD) is a group of conditions characterized by impaired social interaction and communication, and restricted and repetitive behaviours. ASD is a highly heritable disorder involving various genetic determinants. Shank2 (also known as ProSAP1) is a multi-domain scaffolding protein and signalling adaptor enriched at excitatory neuronal synapses, and mutations in the human SHANK2 gene have recently been associated with ASD and intellectual disability. Although ASD-associated genes are being increasingly identified and studied using various approaches, including mouse genetics, further efforts are required to delineate important causal mechanisms with the potential for therapeutic application. Here we show that Shank2-mutant (Shank2(-/-)) mice carrying a mutation identical to the ASD-associated microdeletion in the human SHANK2 gene exhibit ASD-like behaviours including reduced social interaction, reduced social communication by ultrasonic vocalizations, and repetitive jumping. These mice show a marked decrease in NMDA (N-methyl-D-aspartate) glutamate receptor (NMDAR) function. Direct stimulation of NMDARs with D-cycloserine, a partial agonist of NMDARs, normalizes NMDAR function and improves social interaction in Shank2(-/-) mice. Furthermore, treatment of Shank2(-/-) mice with a positive allosteric modulator of metabotropic glutamate receptor 5 (mGluR5), which enhances NMDAR function via mGluR5 activation, also normalizes NMDAR function and markedly enhances social interaction. These results suggest that reduced NMDAR function may contribute to the development of ASD-like phenotypes in Shank2(-/-) mice, and mGluR modulation of NMDARs offers a potential strategy to treat ASD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号