首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Brain-derived neurotrophic factor prevents neuronal death in vivo   总被引:32,自引:0,他引:32  
M M Hofer  Y A Barde 《Nature》1988,331(6153):261-262
Developing vertebrate neurons are thought to depend for their survival on specific neurotrophic proteins present in their target fields. The limited availability of these proteins does not allow the survival of all neurons initially innervating a target, resulting in the widely observed phenomenon of naturally occurring neuronal death. Although a variety of proteins have been reported to promote the survival of neurons in tissue culture, the demonstration that these proteins increase neuronal numbers and/or decrease neuronal death in vivo has only been possible with nerve growth factor (NGF). The generalization of the concept that neurotrophic proteins regulate neuronal survival during normal development critically depends on the demonstration that the survival of neurons in vivo can be increased by the administration of a neurotrophic protein different from NGF. We report here that this is the case with brain-derived neurotrophic factor, a protein of extremely low abundance purified from the central nervous system.  相似文献   

2.
Neurotrophin-evoked rapid excitation through TrkB receptors.   总被引:27,自引:0,他引:27  
K W Kafitz  C R Rose  H Thoenen  A Konnerth 《Nature》1999,401(6756):918-921
Neurotrophins are a family of structurally related proteins that regulate the survival, differentiation and maintenance of function of different populations of peripheral and central neurons. They are also essential for modulating activity-dependent neuronal plasticity. Here we show that neurotrophins elicit action potentials in central neurons. Even at low concentrations, brain-derived neurotrophic factor (BDNF) excited neurons in the hippocampus, cortex and cerebellum. We found that BDNF and neurotrophin-4/5 depolarized neurons just as rapidly as the neurotransmitter glutamate, even at a more than thousand-fold lower concentration. Neurotrophin-3 produced much smaller responses, and nerve growth factor was ineffective. The neurotrophin-induced depolarization resulted from the activation of a sodium ion conductance which was reversibly blocked by K-252a, a protein kinase blocker which prefers tyrosine kinase Trk receptors. Our results demonstrate a very rapid excitatory action of neurotrophins, placing them among the most potent endogenous neuro-excitants in the mammalian central nervous system described so far.  相似文献   

3.
BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra   总被引:73,自引:0,他引:73  
Brain-derived neurotrophic factor (BDNF), present in minute amounts in the adult central nervous system, is a member of the nerve growth factor (NGF) family, which includes neurotrophin-3 (NT-3). NGF, BDNF and NT-3 all support survival of subpopulations of neural crest-derived sensory neurons; most sympathetic neurons are responsive to NGF, but not to BDNF; NT-3 and BDNF, but not NGF, promote survival of sensory neurons of the nodose ganglion. BDNF, but not NGF, supports the survival of cultured retinal ganglion cells but both NGF and BDNF promote the survival of septal cholinergic neurons in vitro. However, knowledge of their precise physiological role in development and maintenance of the nervous system neurons is still limited. The BDNF gene is expressed in many regions of the adult CNS, including the striatum. A protein partially purified from bovine striatum, a target of nigral dopaminergic neurons, with characteristics apparently similar to those of BDNF, can enhance the survival of dopaminergic neurons in mesencephalic cultures. BDNF seems to be a trophic factor for mesencephalic dopaminergic neurons, increasing their survival, including that of neuronal cells which degenerate in Parkinson's disease. Here we report the effects of BDNF on the survival of dopaminergic neurons of the developing substantia nigra.  相似文献   

4.
R W Oppenheim  Q W Yin  D Prevette  Q Yan 《Nature》1992,360(6406):755-757
During normal vertebrate development, about half of spinal motoneurons are lost by a process of naturally occurring or programmed cell death. Additional developing motoneurons degenerate after the removal of targets or afferents. Naturally occurring motoneuron death as well as motoneuron death after loss of targets or after axotomy can be prevented by in vivo treatment with putative target (muscle) derived or other neurotrophic agents. Motoneurons can also be prevented from dying in vitro and in vivo (Y.Q.-W., R.W., D.P., J. Johnson and L. Van Eldik, unpublished data and refs 7, 13, 14) by treatment with central nervous system extracts (brain or spinal cord) and purified central nervous system and glia-derived proteins. Here we report that in vivo treatment of chick embryos with brain-derived neurotrophic factor rescues motoneurons from naturally occurring cell death. Furthermore, in vivo treatment with brain-derived neurotrophic factor (and nerve growth factor) also prevents the induced death of motoneurons that occurs following the removal of descending afferent input (deafferentation). These data indicate that members of the neurotrophin family can promote the survival of developing avian motoneurons.  相似文献   

5.
A M Davies  H Thoenen  Y A Barde 《Nature》1986,319(6053):497-499
Work on nerve growth factor has established that the survival of developing vertebrate neurones depends on the supply of a neurotrophic factor from their target field. The discovery of several new neurotrophic factors has raised the possibility that neurones which innervate multiple target fields require several different neurotrophic factors for survival. Here we show that two distinct neurotrophic factors, one in the central nervous system (CNS) and the other in skeletal muscle, promote the survival of proprioceptive neurones in culture. At saturating concentrations, either factor alone supported most neurones and there was no additional survival in the presence of both factors, but at subsaturating concentrations the combined effect was additive. The neurotrophic activity of each factor was greatest during the period of natural neuronal death. Our results demonstrate that each cultured proprioceptive neurone responds to two distinct neurotrophic factors present in its respective central and peripheral target fields, and suggest that these factors cooperate in regulating survival during development.  相似文献   

6.
A Hohn  J Leibrock  K Bailey  Y A Barde 《Nature》1990,344(6264):339-341
The survival and functional maintenance of vertebrate neurons critically depends on the availability of specific neurotrophic factors. So far, only two such factors, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) have been characterized and shown to have the typical features of secretory proteins. This characterization has been possible because of the extraordinarily large quantities of NGF in some adult tissues, and the virtually unlimited availability of brain tissue from which BDNF was isolated. Both NGF and BDNF promote the survival of distinct neuronal populations in vivo and are related in their primary structure, suggesting that they are members of a gene family. Although there is little doubt about the existence of other such proteins, their low abundance has rendered their identification and characterization difficult. Taking advantage of sequence identities between NGF and BDNF, we have now identified a third member of this family, which we name neurotrophin-3. Both the tissue distribution of the messenger RNA and the neuronal specificity of this secretory protein differ from those of NGF and BDNF. Alignment of the sequences of the three proteins reveals a remarkable number of amino acid identities, including all cysteine residues. This alignment also delineates four variable domains, each of 7-11 amino acids, indicating structural elements presumably involved in the neuronal specificity of these proteins.  相似文献   

7.
Activin is a nerve cell survival molecule   总被引:22,自引:0,他引:22  
The structures of five neurotrophic molecules have so far been published. Nerve growth factor, fibroblast growth factor and purpurin, have been identified as nerve-cell survival molecules. More recently, brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor have been cloned and sequenced. As all these proteins stimulate the survival of ciliary or sensory neurons, a new cell survival assay is required if novel neurotrophic molecules are to be discovered. P19 teratoma cells differentiate to nerve-like cells in the presence of 5 x 10(-7) M retinoic acid (RA). But when P19 cells are plated in N2 synthetic medium without being exposed to RA, they die within 48 h. In an attempt to identify a molecule(s) that can substitute for RA in promoting P19 survival, we assayed serum-free growth-conditioned media for their ability to promote P19 survival. One cell line from the rat eye secreted a molecule that promoted the survival of P19 cells and some types of nerve cell. We identified this molecule as activin, better known for its role in hormone secretion.  相似文献   

8.
Functional regeneration of sensory axons into the adult spinal cord   总被引:34,自引:0,他引:34  
Ramer MS  Priestley JV  McMahon SB 《Nature》2000,403(6767):312-316
The arrest of dorsal root axonal regeneration at the transitional zone between the peripheral and central nervous system has been repeatedly described since the early twentieth century. Here we show that, with trophic support to damaged sensory axons, this regenerative barrier is surmountable. In adult rats with injured dorsal roots, treatment with nerve growth factor (NGF), neurotrophin-3 (NT3) and glial-cell-line-derived neurotrophic factor (GDNF), but not brain-derived neurotrophic factor (BDNF), resulted in selective regrowth of damaged axons across the dorsal root entry zone and into the spinal cord. Dorsal horn neurons were found to be synaptically driven by peripheral nerve stimulation in rats treated with NGF, NT3 and GDNF, demonstrating functional reconnection. In behavioural studies, rats treated with NGF and GDNF recovered sensitivity to noxious heat and pressure. The observed effects of neurotrophic factors corresponded to their known actions on distinct subpopulations of sensory neurons. Neurotrophic factor treatment may thus serve as a viable treatment in promoting recovery from root avulsion injuries. I  相似文献   

9.
Q Yan  J Elliott  W D Snider 《Nature》1992,360(6406):753-755
Current ideas about the dependence of neurons on target-derived growth factors were formulated on the basis of experiments involving neurons with projections to the periphery. Nerve growth factor (NGF) and recently identified members of the NGF family of neuronal growth factors, known as neurotrophins, are thought to regulate survival of sympathetic and certain populations of sensory ganglion cells during development. Far less is known about factors that regulate the survival of spinal and cranial motor neurons, which also project to peripheral targets. NGF has not been shown to influence motor neuron survival, and whether the newly identified neurotrophins promote motor neuron survival is unknown. We show here that brain-derived neurotrophic factor (BDNF) is retrogradely transported by motor neurons in neonatal rats and that local application of BDNF to transected sciatic nerve prevents the massive death of motor neurons that normally follows axotomy in the neonatal period. These results show that BDNF has survival-promoting effects on motor neurons in vivo and suggest that BDNF may influence motor neuron survival during development.  相似文献   

10.
M Sendtner  B Holtmann  R Kolbeck  H Thoenen  Y A Barde 《Nature》1992,360(6406):757-759
Motoneurons innervating the skeletal musculature were among the first neurons shown to require the presence of their target cells to develop appropriately. But the characterization of molecules allowing motoneuron survival has been difficult. Ciliary neurotrophic factor prevents the death of motoneurons, but its gene is not expressed during development. Although the presence of a neurotrophin receptor on developing motoneurons has suggested a role for neurotrophins, none could be shown to promote motoneuron survival in vitro. We report here that brain-derived neurotrophic factor can prevent the death of axotomized motoneurons in newborn rats, suggesting a role for this neurotrophin for motoneuron survival in vivo.  相似文献   

11.
E Cattaneo  R McKay 《Nature》1990,347(6295):762-765
Nerve growth factor plays an important part in neuron-target interactions in the late embryonic and adult brain. We now report that this growth factor controls the proliferation of neuronal precursors in a defined culture system of cells derived from the early embryonic brain. Neuronal precursor cells were identified by expression of the intermediate filament protein nestin. These cells proliferate in response to nerve growth factor but only after they have been exposed to basic fibroblast growth factor. On withdrawal of nerve growth factor, the proliferative cells differentiate into neurons. Thus, in combination with other growth factors, nerve growth factor regulates the proliferation and terminal differentiation of neuroepithelial stem cells.  相似文献   

12.
H Wang  M Tessier-Lavigne 《Nature》1999,401(6755):765-769
During development, neurons extend axons to their targets, then become dependent for their survival on trophic substances secreted by their target cells. Competition for limiting amounts of these substances is thought to account for much of the extensive naturally-occurring cell death that is seen throughout the nervous system. Here we show that spinal commissural neurons, a group of long projection neurons in the central nervous system (CNS), are also dependent for their survival on trophic support from one of their intermediate targets, the floor plate of the spinal cord. This dependence occurs during a several-day-long period when their axons extend along the floor plate, following which they develop additional trophic requirements. A dependence of neurons on trophic support derived en passant from their intermediate axonal targets provides a mechanism for rapidly eliminating misprojecting neurons, which may help to prevent the formation of aberrant neuronal circuits during the development of the nervous system.  相似文献   

13.
A brain-specific microRNA regulates dendritic spine development   总被引:6,自引:0,他引:6  
MicroRNAs are small, non-coding RNAs that control the translation of target messenger RNAs, thereby regulating critical aspects of plant and animal development. In the mammalian nervous system, the spatiotemporal control of mRNA translation has an important role in synaptic development and plasticity. Although a number of microRNAs have been isolated from the mammalian brain, neither the specific microRNAs that regulate synapse function nor their target mRNAs have been identified. Here we show that a brain-specific microRNA, miR-134, is localized to the synapto-dendritic compartment of rat hippocampal neurons and negatively regulates the size of dendritic spines--postsynaptic sites of excitatory synaptic transmission. This effect is mediated by miR-134 inhibition of the translation of an mRNA encoding a protein kinase, Limk1, that controls spine development. Exposure of neurons to extracellular stimuli such as brain-derived neurotrophic factor relieves miR-134 inhibition of Limk1 translation and in this way may contribute to synaptic development, maturation and/or plasticity.  相似文献   

14.
Adaptation in the chemotactic guidance of nerve growth cones   总被引:14,自引:0,他引:14  
Ming GL  Wong ST  Henley J  Yuan XB  Song HJ  Spitzer NC  Poo MM 《Nature》2002,417(6887):411-418
Pathfinding by growing axons in the developing nervous system may be guided by gradients of extracellular guidance factors. Analogous to the process of chemotaxis in microorganisms, we found that axonal growth cones of cultured Xenopus spinal neurons exhibit adaptation during chemotactic migration, undergoing consecutive phases of desensitization and resensitization in the presence of increasing basal concentrations of the guidance factor netrin-1 or brain-derived neurotrophic factor. The desensitization is specific to the guidance factor and is accompanied by a reduction of Ca2+ signalling, whereas resensitization requires activation of mitogen-associated protein kinase and local protein synthesis. Such adaptive behaviour allows the growth cone to re-adjust its sensitivity over a wide range of concentrations of the guidance factor, an essential feature for long-range chemotaxis.  相似文献   

15.
D Purves  W D Snider  J T Voyvodic 《Nature》1988,336(6195):123-128
A remarkable feature of nerve cells is the complex and variable pattern of their axonal and dendritic branches. Quantitative studies of a simple part of the nervous system in mammals provide evidence that neuronal geometry and innervation are regulated by long-term trophic interactions between neurons and their targets. This trophic linkage may explain how nerve cells adjust their function to the needs of bodies that vary markedly in size and form.  相似文献   

16.
I A Hendry  C E Hill 《Nature》1980,287(5783):647-649
Neurones depend on contact with their target tissues for survival and subsequent development. The protein, nerve growth factor (NGF), can be selectively taken up by sympathetic nerve terminals and reaches the neuronal perikaryon by a process of retrograde intra-axonal transport, suggesting that its role in vivo is to act as a target tissue-derived trophic factor. The development of the neurones of the chick ciliary ganglion requires the presence of structures derived from the optic cup. Several studies in vitro have shown that media conditioned by non-neuronal cells contain factors that result in the survival of neurones from ciliary ganglia. In particular, chick embryo iris, ciliary body and choroid contained large amounts of these factors indicating the presence of a target tissue-derived trophic factor for the cholinergic ciliary ganglion. This study demonstrates that neurones of the ciliary ganglion accumulate, by retrograde intra-axonal transport, proteins synthesized and released by optic tissues in culture.  相似文献   

17.
Brain-derived neurotrophic factor (BDNF), like other neurotrophins, is a polypeptidic factor initially regarded to be responsible for neuron proliferation, differentiation and survival, through its uptake at nerve terminals and retrograde transport to the cell body. A more diverse role for BDNF has emerged progressively from observations showing that it is also transported anterogradely, is released on neuron depolarization, and triggers rapid intracellular signals and action potentials in central neurons. Here we report that BDNF elicits long-term neuronal adaptations by controlling the responsiveness of its target neurons to the important neurotransmitter, dopamine. Using lesions and gene-targeted mice lacking BDNF, we show that BDNF from dopamine neurons is responsible for inducing normal expression of the dopamine D3 receptor in nucleus accumbens both during development and in adulthood. BDNF from corticostriatal neurons also induces behavioural sensitization, by triggering overexpression of the D3 receptor in striatum of hemiparkinsonian rats. Our results suggest that BDNF may be an important determinant of pathophysiological conditions such as drug addiction, schizophrenia or Parkinson's disease, in which D3 receptor expression is abnormal.  相似文献   

18.
Structure, expression and function of a schwannoma-derived growth factor   总被引:5,自引:0,他引:5  
H Kimura  W H Fischer  D Schubert 《Nature》1990,348(6298):257-260
During the development of the nervous system, cells require growth factors that regulate their division and survival. To identify new growth factors, serum-free growth-conditioned media from many clonal cell lines were screened for the presence of mitogens for central nervous system glial cells. A cell line secreting a potent glial mitogen was established from a tumour (or 'schwannoma') derived from the sheath of the sciatic nerve. The cells of the tumour, named JS1 cells, were adapted to clonal culture and identified as Schwann cells. Schwann cells secrete an autocrine mitogen and human schwannoma extracts have mitogenic activity on glial cells. Until now, neither mitogen has been purified. Here we report the purification and characterization of a mitogenic molecule, designated schwannoma-derived growth factor (SDGF), from the growth-conditioned medium of the JS1 Schwann cell line. SDGF belongs to the epidermal growth factor family, and is an autocrine growth factor as well as a mitogen for astrocytes, Schwann cells and fibroblasts.  相似文献   

19.
Nerve growth factor (NGF) is a member of an expanding family of neurotrophic factors (including brain-derived neurotrophic factor and the neurotrophins) that control the development and survival of certain neuronal populations both in the peripheral and in the central nervous systems. Its biological effects are mediated by a high-affinity ligand-receptor interaction and a tyrosine kinase signalling pathway. A potential use for NGF and its relatives in the treatment of neurological disorders such as Alzheimer's disease and Parkinson's disease requires an understanding of the structure-function relationships of NGF. NGF is a dimeric molecule, with 118 amino acids per protomer. We report the crystal structure of the murine NGF dimer at 2.3-A resolution, which reveals a novel protomer structure consisting of three antiparallel pairs of beta strands, together forming a flat surface. Two subunits associate through this surface, thus burying a total of 2,332 A. Four loop regions, which contain many of the variable residues observed between different NGF-related molecules, may determine the different receptor specificities. A clustering of positively charged side chains may provide a complementary interaction with the acidic low-affinity NGF receptor. The structure provides a model for rational design of analogues of NGF and its relatives and for testing the NGF-receptor recognition determinants critical for signal transduction.  相似文献   

20.
Protein quality-control, especially the removal of proteins with aberrant structures, has an important role in maintaining the homeostasis of non-dividing neural cells. In addition to the ubiquitin-proteasome system, emerging evidence points to the importance of autophagy--the bulk protein degradation pathway involved in starvation-induced and constitutive protein turnover--in the protein quality-control process. However, little is known about the precise roles of autophagy in neurons. Here we report that loss of Atg7 (autophagy-related 7), a gene essential for autophagy, leads to neurodegeneration. We found that mice lacking Atg7 specifically in the central nervous system showed behavioural defects, including abnormal limb-clasping reflexes and a reduction in coordinated movement, and died within 28 weeks of birth. Atg7 deficiency caused massive neuronal loss in the cerebral and cerebellar cortices. Notably, polyubiquitinated proteins accumulated in autophagy-deficient neurons as inclusion bodies, which increased in size and number with ageing. There was, however, no obvious alteration in proteasome function. Our results indicate that autophagy is essential for the survival of neural cells, and that impairment of autophagy is implicated in the pathogenesis of neurodegenerative disorders involving ubiquitin-containing inclusion bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号