首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a map of 1.42 million single nucleotide polymorphisms (SNPs) distributed throughout the human genome, providing an average density on available sequence of one SNP every 1.9 kilobases. These SNPs were primarily discovered by two projects: The SNP Consortium and the analysis of clone overlaps by the International Human Genome Sequencing Consortium. The map integrates all publicly available SNPs with described genes and other genomic features. We estimate that 60,000 SNPs fall within exon (coding and untranslated regions), and 85% of exons are within 5 kb of the nearest SNP. Nucleotide diversity varies greatly across the genome, in a manner broadly consistent with a standard population genetic model of human history. This high-density SNP map provides a public resource for defining haplotype variation across the genome, and should help to identify biomedically important genes for diagnosis and therapy.  相似文献   

2.
An SNP map of human chromosome 22   总被引:35,自引:0,他引:35  
The human genome sequence will provide a reference for measuring DNA sequence variation in human populations. Sequence variants are responsible for the genetic component of individuality, including complex characteristics such as disease susceptibility and drug response. Most sequence variants are single nucleotide polymorphisms (SNPs), where two alternate bases occur at one position. Comparison of any two genomes reveals around 1 SNP per kilobase. A sufficiently dense map of SNPs would allow the detection of sequence variants responsible for particular characteristics on the basis that they are associated with a specific SNP allele. Here we have evaluated large-scale sequencing approaches to obtaining SNPs, and have constructed a map of 2,730 SNPs on human chromosome 22. Most of the SNPs are within 25 kilobases of a transcribed exon, and are valuable for association studies. We have scaled up the process, detecting over 65,000 SNPs in the genome as part of The SNP Consortium programme, which is on target to build a map of 1 SNP every 5 kilobases that is integrated with the human genome sequence and that is freely available in the public domain.  相似文献   

3.
Wong GK  Liu B  Wang J  Zhang Y  Yang X  Zhang Z  Meng Q  Zhou J  Li D  Zhang J  Ni P  Li S  Ran L  Li H  Zhang J  Li R  Li S  Zheng H  Lin W  Li G  Wang X  Zhao W  Li J  Ye C  Dai M  Ruan J  Zhou Y  Li Y  He X  Zhang Y  Wang J  Huang X  Tong W  Chen J  Ye J  Chen C  Wei N  Li G  Dong L  Lan F  Sun Y  Zhang Z  Yang Z  Yu Y  Huang Y  He D  Xi Y  Wei D  Qi Q  Li W  Shi J  Wang M  Xie F  Wang J  Zhang X  Wang P  Zhao Y  Li N  Yang N  Dong W  Hu S  Zeng C  Zheng W  Hao B  Hillier LW  Yang SP  Warren WC  Wilson RK  Brandström M  Ellegren H  Crooijmans RP 《Nature》2004,432(7018):717-722
We describe a genetic variation map for the chicken genome containing 2.8 million single-nucleotide polymorphisms (SNPs). This map is based on a comparison of the sequences of three domestic chicken breeds (a broiler, a layer and a Chinese silkie) with that of their wild ancestor, red jungle fowl. Subsequent experiments indicate that at least 90% of the variant sites are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about five SNPs per kilobase for almost every possible comparison between red jungle fowl and domestic lines, between two different domestic lines, and within domestic lines--in contrast to the notion that domestic animals are highly inbred relative to their wild ancestors. In fact, most of the SNPs originated before domestication, and there is little evidence of selective sweeps for adaptive alleles on length scales greater than 100 kilobases.  相似文献   

4.
Positive correlation between recombination rate and nucleoUde diversity has been observed in a wide variety of eukaryotes on megabase scale. On the basis of genome-wide chicken genetic variation map generated by comparing three domestic breeds with wild ancestor and the positions of markers on the genetic linkage map, we found that SNPs rates were similar for all chromosomes while the recombination rates increased in micro chromosomes. In other words no correlation exists in chromosome size. Nevertheless, when we scanned the genome by calculating the values of each characteristic within non-overlapping windows, instead of single value for each chromosomes, the nucleoUde diversity was found to be significantly correlated with the recombination rate (r=0.27, P〈0.0005). Furthermore, the significant association not only existed between these two features, but also existed between all 6 pairwise combinations of nucleoUde diversity, recombination rate, GC content and average gene length. This co-variation is very meaningful for the studies of sequence evolution.  相似文献   

5.
Strategies for assembling large, complex genomes have evolved to include a combination of whole-genome shotgun sequencing and hierarchal map-assisted sequencing. Whole-genome maps of all types can aid genome assemblies, generally starting with low-resolution cytogenetic maps and ending with the highest resolution of sequence. Fingerprint clone maps are based upon complete restriction enzyme digests of clones representative of the target genome, and ultimately comprise a near-contiguous path of clones across the genome. Such clone-based maps are used to validate sequence assembly order, supply long-range linking information for assembled sequences, anchor sequences to the genetic map and provide templates for closing gaps. Fingerprint maps are also a critical resource for subsequent functional genomic studies, because they provide a redundant and ordered sampling of the genome with clones. In an accompanying paper we describe the draft genome sequence of the chicken, Gallus gallus, the first species sequenced that is both a model organism and a global food source. Here we present a clone-based physical map of the chicken genome at 20-fold coverage, containing 260 contigs of overlapping clones. This map represents approximately 91% of the chicken genome and enables identification of chicken clones aligned to positions in other sequenced genomes.  相似文献   

6.
Most genomic variation is attributable to single nucleotide polymorphisms (SNPs), which therefore offer the highest resolution for tracking disease genes and population history. It has been proposed that a dense map of 30,000-500,000 SNPs can be used to scan the human genome for haplotypes associated with common diseases. Here we describe a simple but powerful method, called reduced representation shotgun (RRS) sequencing, for creating SNP maps. RRS re-samples specific subsets of the genome from several individuals, and compares the resulting sequences using a highly accurate SNP detection algorithm. The method can be extended by alignment to available genome sequence, increasing the yield of SNPs and providing map positions. These methods are being used by The SNP Consortium, an international collaboration of academic centres, pharmaceutical companies and a private foundation, to discover and release at least 300,000 human SNPs. We have discovered 47,172 human SNPs by RRS, and in total the Consortium has identified 148,459 SNPs. More broadly, RRS facilitates the rapid, inexpensive construction of SNP maps in biomedically and agriculturally important species. SNPs discovered by RRS also offer unique advantages for large-scale genotyping.  相似文献   

7.
The map-based sequence of the rice genome   总被引:14,自引:0,他引:14  
Rice, one of the world's most important food plants, has important syntenic relationships with the other cereal species and is a model plant for the grasses. Here we present a map-based, finished quality sequence that covers 95% of the 389 Mb genome, including virtually all of the euchromatin and two complete centromeres. A total of 37,544 non-transposable-element-related protein-coding genes were identified, of which 71% had a putative homologue in Arabidopsis. In a reciprocal analysis, 90% of the Arabidopsis proteins had a putative homologue in the predicted rice proteome. Twenty-nine per cent of the 37,544 predicted genes appear in clustered gene families. The number and classes of transposable elements found in the rice genome are consistent with the expansion of syntenic regions in the maize and sorghum genomes. We find evidence for widespread and recurrent gene transfer from the organelles to the nuclear chromosomes. The map-based sequence has proven useful for the identification of genes underlying agronomic traits. The additional single-nucleotide polymorphisms and simple sequence repeats identified in our study should accelerate improvements in rice production.  相似文献   

8.
The analysis of the first plant genomes provided unexpected evidence for genome duplication events in species that had previously been considered as true diploids on the basis of their genetics. These polyploidization events may have had important consequences in plant evolution, in particular for species radiation and adaptation and for the modulation of functional capacities. Here we report a high-quality draft of the genome sequence of grapevine (Vitis vinifera) obtained from a highly homozygous genotype. The draft sequence of the grapevine genome is the fourth one produced so far for flowering plants, the second for a woody species and the first for a fruit crop (cultivated for both fruit and beverage). Grapevine was selected because of its important place in the cultural heritage of humanity beginning during the Neolithic period. Several large expansions of gene families with roles in aromatic features are observed. The grapevine genome has not undergone recent genome duplication, thus enabling the discovery of ancestral traits and features of the genetic organization of flowering plants. This analysis reveals the contribution of three ancestral genomes to the grapevine haploid content. This ancestral arrangement is common to many dicotyledonous plants but is absent from the genome of rice, which is a monocotyledon. Furthermore, we explain the chronology of previously described whole-genome duplication events in the evolution of flowering plants.  相似文献   

9.
Initial sequencing and comparative analysis of the mouse genome   总被引:2,自引:0,他引:2  
The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism.  相似文献   

10.
考虑的基因组的进化基于两种形式:基因组中染色体之间的移位(translocation)和染色体内部的翻转(reversal).研究了标号基因组间的重组问题:求一个标号基因组进化成另一个标号基因组所需最少数目的移位和翻转,这个数目叫做重组距离.给出了求“共尾”标号基因组间重组距离的一个线性时间算法,从而改进了Hannenhalli和Pevzner的O(n^2)算法,其中n是基因组中基因的个数.  相似文献   

11.
The medaka draft genome and insights into vertebrate genome evolution   总被引:3,自引:0,他引:3  
Teleosts comprise more than half of all vertebrate species and have adapted to a variety of marine and freshwater habitats. Their genome evolution and diversification are important subjects for the understanding of vertebrate evolution. Although draft genome sequences of two pufferfishes have been published, analysis of more fish genomes is desirable. Here we report a high-quality draft genome sequence of a small egg-laying freshwater teleost, medaka (Oryzias latipes). Medaka is native to East Asia and an excellent model system for a wide range of biology, including ecotoxicology, carcinogenesis, sex determination and developmental genetics. In the assembled medaka genome (700 megabases), which is less than half of the zebrafish genome, we predicted 20,141 genes, including approximately 2,900 new genes, using 5'-end serial analysis of gene expression tag information. We found single nucleotide polymorphisms (SNPs) at an average rate of 3.42% between the two inbred strains derived from two regional populations; this is the highest SNP rate seen in any vertebrate species. Analyses based on the dense SNP information show a strict genetic separation of 4 million years (Myr) between the two populations, and suggest that differential selective pressures acted on specific gene categories. Four-way comparisons with the human, pufferfish (Tetraodon), zebrafish and medaka genomes revealed that eight major interchromosomal rearrangements took place in a remarkably short period of approximately 50 Myr after the whole-genome duplication event in the teleost ancestor and afterwards, intriguingly, the medaka genome preserved its ancestral karyotype for more than 300 Myr.  相似文献   

12.
【目的】杨树是重要的速生用材、生态防护和碳汇造林树种,也是林木遗传研究的模式树种。开展杨树泛基因组构建与基因组变异分析,可为杨树精准育种和林木泛基因组研究提供理论先导。【方法】 以公开发表的高质量杨树基因组序列为基础,分析不同类型的序列变异,总结变异特征,并构建基于基因和图形结构的杨树泛基因组。【结果】 本研究收集到8个杨属树种和3个二倍体或三倍体杨树杂交品种的基因组序列,3个杂交品种包含7个单倍型亚基因组序列,较好地代表了杨树4个组派的基因组特征。分析结果表明,杨树基因组间存在较多大的结构变异。在基于基因的泛基因组中,共线核心基因、非共线核心基因、次核心基因、非必需基因、特异基因占比分别为12.5%、34.9%、31.4%、16.5%、4.7%。其中,非必需基因在功能上具有较高的多样性。以基因组序列变异为基础构建杨树图形结构泛基因组,大幅提升2代测序数据的变异检测效果。通过泛基因组变异热点分析,鉴定出2个与物候关联的基因位点。【结论】 杨属基因组中存在大量染色体重排,进而增加了基因调控的多样性。杨树组/派间的基因组结构变异可能与物候适应存在关联。基于林木基因组序列的复杂性,在林木泛基因组研究中应注意基因组整合范围与研究目标相匹配,结合基因泛基因组和图形结构泛基因组结果,综合解析林木的遗传变异规律和物种演化特征。  相似文献   

13.
Levine M  Tjian R 《Nature》2003,424(6945):147-151
Whole-genome sequence assemblies are now available for seven different animals, including nematode worms, mice and humans. Comparative genome analyses reveal a surprising constancy in genetic content: vertebrate genomes have only about twice the number of genes that invertebrate genomes have, and the increase is primarily due to the duplication of existing genes rather than the invention of new ones. How, then, has evolutionary diversity arisen? Emerging evidence suggests that organismal complexity arises from progressively more elaborate regulation of gene expression.  相似文献   

14.
A physical map of the mouse genome   总被引:1,自引:0,他引:1  
A physical map of a genome is an essential guide for navigation, allowing the location of any gene or other landmark in the chromosomal DNA. We have constructed a physical map of the mouse genome that contains 296 contigs of overlapping bacterial clones and 16,992 unique markers. The mouse contigs were aligned to the human genome sequence on the basis of 51,486 homology matches, thus enabling use of the conserved synteny (correspondence between chromosome blocks) of the two genomes to accelerate construction of the mouse map. The map provides a framework for assembly of whole-genome shotgun sequence data, and a tile path of clones for generation of the reference sequence. Definition of the human-mouse alignment at this level of resolution enables identification of a mouse clone that corresponds to almost any position in the human genome. The human sequence may be used to facilitate construction of other mammalian genome maps using the same strategy.  相似文献   

15.
The mosaic structure of variation in the laboratory mouse genome   总被引:56,自引:0,他引:56  
Most inbred laboratory mouse strains are known to have originated from a mixed but limited founder population in a few laboratories. However, the effect of this breeding history on patterns of genetic variation among these strains and the implications for their use are not well understood. Here we present an analysis of the fine structure of variation in the mouse genome, using single nucleotide polymorphisms (SNPs). When the recently assembled genome sequence from the C57BL/6J strain is aligned with sample sequence from other strains, we observe long segments of either extremely high (approximately 40 SNPs per 10 kb) or extremely low (approximately 0.5 SNPs per 10 kb) polymorphism rates. In all strain-to-strain comparisons examined, only one-third of the genome falls into long regions (averaging >1 Mb) of a high SNP rate, consistent with estimated divergence rates between Mus musculus domesticus and either M. m. musculus or M. m. castaneus. These data suggest that the genomes of these inbred strains are mosaics with the vast majority of segments derived from domesticus and musculus sources. These observations have important implications for the design and interpretation of positional cloning experiments.  相似文献   

16.
The tomato genome sequence provides insights into fleshy fruit evolution   总被引:12,自引:0,他引:12  
Tomato Genome Consortium 《Nature》2012,485(7400):635-641
Tomato (Solanum lycopersicum) is a major crop plant and a model system for fruit development. Solanum is one of the largest angiosperm genera and includes annual and perennial plants from diverse habitats. Here we present a high-quality genome sequence of domesticated tomato, a draft sequence of its closest wild relative, Solanum pimpinellifolium, and compare them to each other and to the potato genome (Solanum tuberosum). The two tomato genomes show only 0.6% nucleotide divergence and signs of recent admixture, but show more than 8% divergence from potato, with nine large and several smaller inversions. In contrast to Arabidopsis, but similar to soybean, tomato and potato small RNAs map predominantly to gene-rich chromosomal regions, including gene promoters. The Solanum lineage has experienced two consecutive genome triplications: one that is ancient and shared with rosids, and a more recent one. These triplications set the stage for the neofunctionalization of genes controlling fruit characteristics, such as colour and fleshiness.  相似文献   

17.
She X  Jiang Z  Clark RA  Liu G  Cheng Z  Tuzun E  Church DM  Sutton G  Halpern AL  Eichler EE 《Nature》2004,431(7011):927-930
Complex eukaryotic genomes are now being sequenced at an accelerated pace primarily using whole-genome shotgun (WGS) sequence assembly approaches. WGS assembly was initially criticized because of its perceived inability to resolve repeat structures within genomes. Here, we quantify the effect of WGS sequence assembly on large, highly similar repeats by comparison of the segmental duplication content of two different human genome assemblies. Our analysis shows that large (> 15 kilobases) and highly identical (> 97%) duplications are not adequately resolved by WGS assembly. This leads to significant reduction in genome length and the loss of genes embedded within duplications. Comparable analyses of mouse genome assemblies confirm that strict WGS sequence assembly will oversimplify our understanding of mammalian genome structure and evolution; a hybrid strategy using a targeted clone-by-clone approach to resolve duplications is proposed.  相似文献   

18.
Cancers arise owing to mutations in a subset of genes that confer growth advantage. The availability of the human genome sequence led us to propose that systematic resequencing of cancer genomes for mutations would lead to the discovery of many additional cancer genes. Here we report more than 1,000 somatic mutations found in 274 megabases (Mb) of DNA corresponding to the coding exons of 518 protein kinase genes in 210 diverse human cancers. There was substantial variation in the number and pattern of mutations in individual cancers reflecting different exposures, DNA repair defects and cellular origins. Most somatic mutations are likely to be 'passengers' that do not contribute to oncogenesis. However, there was evidence for 'driver' mutations contributing to the development of the cancers studied in approximately 120 genes. Systematic sequencing of cancer genomes therefore reveals the evolutionary diversity of cancers and implicates a larger repertoire of cancer genes than previously anticipated.  相似文献   

19.
A dense map of genetic variation in the laboratory mouse genome will provide insights into the evolutionary history of the species and lead to an improved understanding of the relationship between inter-strain genotypic and phenotypic differences. Here we resequence the genomes of four wild-derived and eleven classical strains. We identify 8.27 million high-quality single nucleotide polymorphisms (SNPs) densely distributed across the genome, and determine the locations of the high (divergent subspecies ancestry) and low (common subspecies ancestry) SNP-rate intervals for every pairwise combination of classical strains. Using these data, we generate a genome-wide haplotype map containing 40,898 segments, each with an average of three distinct ancestral haplotypes. For the haplotypes in the classical strains that are unequivocally assigned ancestry, the genetic contributions of the Mus musculus subspecies--M. m. domesticus, M. m. musculus, M. m. castaneus and the hybrid M. m. molossinus--are 68%, 6%, 3% and 10%, respectively; the remaining 13% of haplotypes are of unknown ancestral origin. The considerable regional redundancy of the SNP data will facilitate imputation of the majority of these genotypes in less-densely typed classical inbred strains to provide a complete view of variation in additional strains.  相似文献   

20.
The genome sequence and structure of rice chromosome 1   总被引:2,自引:0,他引:2  
The rice species Oryza sativa is considered to be a model plant because of its small genome size, extensive genetic map, relative ease of transformation and synteny with other cereal crops. Here we report the essentially complete sequence of chromosome 1, the longest chromosome in the rice genome. We summarize characteristics of the chromosome structure and the biological insight gained from the sequence. The analysis of 43.3 megabases (Mb) of non-overlapping sequence reveals 6,756 protein coding genes, of which 3,161 show homology to proteins of Arabidopsis thaliana, another model plant. About 30% (2,073) of the genes have been functionally categorized. Rice chromosome 1 is (G + C)-rich, especially in its coding regions, and is characterized by several gene families that are dispersed or arranged in tandem repeats. Comparison with a draft sequence indicates the importance of a high-quality finished sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号