首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peppiatt CM  Howarth C  Mobbs P  Attwell D 《Nature》2006,443(7112):700-704
Neural activity increases local blood flow in the central nervous system (CNS), which is the basis of BOLD (blood oxygen level dependent) and PET (positron emission tomography) functional imaging techniques. Blood flow is assumed to be regulated by precapillary arterioles, because capillaries lack smooth muscle. However, most (65%) noradrenergic innervation of CNS blood vessels terminates near capillaries rather than arterioles, and in muscle and brain a dilatory signal propagates from vessels near metabolically active cells to precapillary arterioles, suggesting that blood flow control is initiated in capillaries. Pericytes, which are apposed to CNS capillaries and contain contractile proteins, could initiate such signalling. Here we show that pericytes can control capillary diameter in whole retina and cerebellar slices. Electrical stimulation of retinal pericytes evoked a localized capillary constriction, which propagated at approximately 2 microm s(-1) to constrict distant pericytes. Superfused ATP in retina or noradrenaline in cerebellum resulted in constriction of capillaries by pericytes, and glutamate reversed the constriction produced by noradrenaline. Electrical stimulation or puffing GABA (gamma-amino butyric acid) receptor blockers in the inner retina also evoked pericyte constriction. In simulated ischaemia, some pericytes constricted capillaries. Pericytes are probably modulators of blood flow in response to changes in neural activity, which may contribute to functional imaging signals and to CNS vascular disease.  相似文献   

2.
H Kawasaki  K Takasaki  A Saito  K Goto 《Nature》1988,335(6186):164-167
Systemic blood pressure is controlled by changes in the resistance of the peripheral vascular bed for example in the mesenteric blood vessels. The tone of peripheral blood vessels is primarily maintained by sympathetic vasoconstrictor nerves. Although vasodilator innervation has been identified in certain isolated elastic arteries, it is not known whether vasodilator nerves contribute to the regulation of the peripheral resistance vessels. We present pharmacological evidence for the existence of nonadrenergic, noncholinergic (NANC) vasodilator nerves in the mesenteric resistance vessel of the rat and that the resistance is controlled by not only sympathetic vasoconstrictor nerves but also NANC vasodilator nerves. We also show that the neurogenic vasodilation was selectively abolished by depleting endogenous calcitonin gene-related peptide (CGRP), a potent vasodilator neuropeptide, from perivascular nerves. This indicates that CGRP is a novel vasodilator neurotransmitter and may play a role in control of the total peripheral resistance of systemic circulation through a local reflex mechanism.  相似文献   

3.
GABA affects the release of gastrin and somatostatin from rat antral mucosa   总被引:2,自引:0,他引:2  
R F Harty  P A Franklin 《Nature》1983,303(5918):623-624
gamma-Aminobutyric acid (GABA) is regarded as the major inhibitory neurotransmitter in the central nervous system of vertebrates. GABA exerts its inhibitory actions by interacting with specific receptors on pre- and postsynaptic membranes and has been shown to inhibit somatostatin release from hypothalamic neurones in vitro. Concepts of innervation of the gastrointestinal tract have been expanded by recent studies which suggest that GABAergic neurones are not confined solely to the central nervous system but may also exist in the vertebrate peripheral autonomic nervous system. Jessen and coworkers have demonstrated the presence, synthesis and uptake of GABA by the myenteric plexus of the guinea pig taenia coli, and have documented the presence of glutamic acid decarboxylase (GAD) in isolated myenteric plexus. This enzyme is responsible for the conversion of glutamic acid to GABA in GABAergic neurones. The possibility that GABA may have a role in neurotransmission or neuromodulation in the enteric nervous system of the vertebrate gut has been suggested by several investigators. Furthermore, GABA receptors have been demonstrated on elements of the enteric nervous system. The effects of GABA on gastrointestinal endocrine cell function have not been examined. We report here the effects of GABA on gastrin and somatostatin release from isolated rat antral mucosa in short-term in vitro incubations.  相似文献   

4.
D S Baskin  Y Hosobuchi  H H Loh  N M Lee 《Nature》1984,312(5994):551-552
Since the discovery of opiate receptors in the central nervous system (CNS), it has become apparent that endogenous opiate ligands are involved in CNS function. Most attention has focused on their role in modulating pain, but they have also been implicated in various physiological functions and in disease states. We are concerned with evidence that endogenous opioid peptides may also contribute to the neurological deficits arising from cerebral ischaemia. Dynorphin, which is widely distributed in the brain and pituitary, has been reported to produce unusual motor and behavioural effects and may act as a regulatory neuropeptide, not as a classical opiate agonist or antagonist. We have therefore administered to cats in which the right middle cerebral artery had been occluded both dynorphin (1-13) and analogue and control materials. We find that dynorphin (1-13) prolongs survival.  相似文献   

5.
G D Hirst  T O Neild 《Nature》1980,283(5749):767-768
We have recorded the responses of arteriolar smooth muscle cells to iontophoretically applied noradrenaline. Records of both muscle movement and muscle membrane potential were made. We found that two distinct types of response could be detected, depending on the position of the noradrenaline micropipette. One type of response consisted of a localised constriction near the noradrenaline source: this effect could be abolished by the alpha-antagonist phentolamine and was not associated with a change in arteriolar membrane potential. The other type of response was a depolarisation similar to the excitatory junction potentials (e.j.ps) produced by sumpathetic nerve stimulation. These observations suggest that there are two populations of receptors for noradrenaline on arterioles, and could explain the paradoxical failure of alpha-antagonists to block neuromuscular transmission at some sutonomic end organs such as the vas deferens, arteries and arterioles.  相似文献   

6.
Substance P in the ascending cholinergic reticular system   总被引:3,自引:0,他引:3  
S R Vincent  K Satoh  D M Armstrong  H C Fibiger 《Nature》1983,306(5944):688-691
The neocortex receives a major cholinergic innervation from magnocellular neurones in the basal forebrain. However, an ascending cholinergic reticular system has also been postulated to arise from acetylcholinesterase (AChE)-containing neurones in the midbrain and pontine tegmentum. Lesions of this region decrease both AChE and choline acetyltransferase (ChAT) in various forebrain areas, and recent immunohistochemical studies have identified a group of ChAT-containing cell bodies in the midbrain reticular formation and dorsolateral pontine tegmentum. Here we have combined retrograde tracing with ChAT immunohistochemistry to demonstrate that this tegmental cholinergic cell group also directly innervates the cerebral cortex. Other immunohistochemical studies have indicated that the neuropeptide substance P is also present in certain cells in the laterodorsal tegmentum, and these too appear to project to the forebrain. We have therefore performed immunohistochemistry for both ChAT and substance P and have discovered that a subpopulation of the ascending cholinergic reticular neurones contains substance P. Thus, peptide-cholinergic coexistence, previously noted in peripheral neurones, also occurs in the brain.  相似文献   

7.
Calcium transients in astrocyte endfeet cause cerebrovascular constrictions   总被引:1,自引:0,他引:1  
Mulligan SJ  MacVicar BA 《Nature》2004,431(7005):195-199
Cerebral blood flow (CBF) is coupled to neuronal activity and is imaged in vivo to map brain activation. CBF is also modified by afferent projection fibres that release vasoactive neurotransmitters in the perivascular region, principally on the astrocyte endfeet that outline cerebral blood vessels. However, the role of astrocytes in the regulation of cerebrovascular tone remains uncertain. Here we determine the impact of intracellular Ca(2+) concentrations ([Ca(2+)](i)) in astrocytes on the diameter of small arterioles by using two-photon Ca(2+) uncaging to increase [Ca(2+)](i). Vascular constrictions occurred when Ca(2+) waves evoked by uncaging propagated into the astrocyte endfeet and caused large increases in [Ca(2+)](i). The vasoactive neurotransmitter noradrenaline increased [Ca(2+)](i) in the astrocyte endfeet, the peak of which preceded the onset of arteriole constriction. Depressing increases in astrocyte [Ca(2+)](i) with BAPTA inhibited the vascular constrictions in noradrenaline. We find that constrictions induced in the cerebrovasculature by increased [Ca(2+)](i) in astrocyte endfeet are generated through the phospholipase A(2)-arachidonic acid pathway and 20-hydroxyeicosatetraenoic acid production. Vasoconstriction by astrocytes is a previously unknown mechanism for the regulation of CBF.  相似文献   

8.
针对弹性管模型适用于模拟大中型动脉血管,不适用于模拟微小型动脉血管问题,对人体上肢血管系统建立一种弹性管与弹性腔融合模型,从而提高其模型的精度.首先分别在肱-桡动脉段建立弹性管模型,在桡-指动脉段建立弹性腔模型;然后在两模型的接触面处应用血管压力和血液流量的连续性原理,建立二者联系,导出融合模型;最后对比分析弹性管模型和弹性管与弹性腔融合模型的仿真性能.在PRD,H1,H2,t1和t 2评价指标下,弹性管与弹性腔融合模型(PRD:(4.0±2.0)%;t1:(2.5±1.7)%;t2:(3.1±1.9)%;H1:(1.9±2.1)%;H2:(1.3±1.3)%)的仿真波形和实测波形误差均低于弹性管模型(PRD:(16.5±8.3)%;t1:(3.4±2.4)%;t2:(4.5±3.7)%;H1:(22.1±14.9)%;H2:(19.7±15.3)%).结果表明,弹性管与弹性腔融合模型能够更精确地模拟人体上肢血管系统的生理状态.  相似文献   

9.
Glial and neuronal control of brain blood flow   总被引:1,自引:0,他引:1  
Blood flow in the brain is regulated by neurons and astrocytes. Knowledge of how these cells control blood flow is crucial for understanding how neural computation is powered, for interpreting functional imaging scans of brains, and for developing treatments for neurological disorders. It is now recognized that neurotransmitter-mediated signalling has a key role in regulating cerebral blood flow, that much of this control is mediated by astrocytes, that oxygen modulates blood flow regulation, and that blood flow may be controlled by capillaries as well as by arterioles. These conceptual shifts in our understanding of cerebral blood flow control have important implications for the development of new therapeutic approaches.  相似文献   

10.
Astrocytes present myelin basic protein to encephalitogenic T-cell lines   总被引:9,自引:0,他引:9  
A Fontana  W Fierz  H Wekerle 《Nature》1984,307(5948):273-276
Astrocyte proliferation and perivascular lymphocyte infiltration are conspicuous among the cellular changes in the active brain lesions of multiple sclerosis patients. Recent observations have indicated that most of the perivascular lymphocytes are T cells which may be actively involved in the generation of the brain lesions. Much less is known about the significance of the proliferative astrocytes, although the fact that they produce an interleukin-1 (IL-1)-like factor that enhances the release of interleukin-2 by T lymphocytes, may provide a clue. We show here that rat astrocytes are able to present antigen to T lymphocytes in a specific manner which is restricted by the major histocompatibility complex (MHC) and that they can in particular activate myelin basic protein (BP)-specific, encephalitogenic T-cell lines. Only on such interaction do astrocytes express Ia antigens in easily detectable amounts. Antigen presentation by astrocytes may have a central role in the generation of immune responses in the brain.  相似文献   

11.
12.
G K Aghajanian 《Nature》1985,315(6019):501-503
The excitability of various neurones in the mammalian central nervous system (CNS), ranging from motoneurones to serotonergic neurones, is enhanced by alpha 1-adrenoceptor agonists. Excitations mediated via alpha 1-adrenoceptors are associated with a slow depolarization and an increase in input resistance, probably resulting from a decrease in resting potassium conductance. However, the involvement of voltage-dependent transient currents in mediating alpha 1 excitatory effects has not been evaluated. An early transient outward current has been described which is important in regulating the frequency of repetitive firing; it is activated by depolarizing voltage steps from potentials more negative than rest and blocked by 4-aminopyridine. This current, which has been termed 'IA', was found originally in invertebrates and subsequently in various vertebrate neurones. The present single-electrode voltage-clamp study demonstrates an early transient outward current (IA) in serotonergic neurones which is suppressed by noradrenaline and the alpha 1-agonist phenylephrine; a suppression of IA may account in part for the acceleration of pacemaker activity induced by alpha 1-agonists in serotonergic neurones.  相似文献   

13.
Inhibition of the firing of vasopressin neurons by atriopeptin   总被引:5,自引:0,他引:5  
Atriopeptin, the atrial natriuretic peptide, is a circulating hormone that is released from the atria of mammalian hearts in response to volume expansion and acts upon the kidneys, adrenal glands and vasculature to regulate fluid and electrolyte homeostasis. Atriopeptin is also present in the brain of the rat. Atriopeptin immunoreactive cell bodies and fibres are found in many areas known to be involved in the central regulation of the cardiovascular system, suggesting that it may be a neuromediator in the central control of fluid and electrolyte balance. The paraventricular nucleus of the hypothalamus, which contains the cell bodies of neurons that secrete vasopressin from the posterior pituitary gland, receives a dense innervation from atriopeptin-like immunoreactive fibres. We have studied the effect of atriopeptin on the electrical activity of single neurons in the paraventricular nucleus of anaesthetized rats and found that atriopeptin is a potent inhibitor of putative vasopressin neurons. Atriopeptin, which has systemic actions that oppose those of vasopressin, may act as a neuromodulator in the brain to prevent vasopressin secretion.  相似文献   

14.
In degenerative disorders of the central nervous system (CNS), transplantation of neural multipotent (stem) precursor cells (NPCs) is aimed at replacing damaged neural cells. Here we show that in CNS inflammation, NPCs are able to promote neuroprotection by maintaining undifferentiated features and exerting unexpected immune-like functions. In a mouse model of chronic CNS inflammation, systemically injected adult syngeneic NPCs use constitutively activated integrins and functional chemokine receptors to selectively enter the inflamed CNS. These undifferentiated cells survive repeated episodes of CNS inflammation by accumulating within perivascular areas where reactive astrocytes, inflamed endothelial cells and encephalitogenic T cells produce neurogenic and gliogenic regulators. In perivascular CNS areas, surviving adult NPCs induce apoptosis of blood-borne CNS-infiltrating encephalitogenic T cells, thus protecting against chronic neural tissue loss as well as disease-related disability. These results indicate that undifferentiated adult NPCs have relevant therapeutic potential in chronic inflammatory CNS disorders because they display immune-like functions that promote long-lasting neuroprotection.  相似文献   

15.
Sze JY  Victor M  Loer C  Shi Y  Ruvkun G 《Nature》2000,403(6769):560-564
The functions of serotonin have been assigned through serotonin-receptor-specific drugs and mutants; however, because a constellation of receptors remains when a single receptor subtype is inhibited, the coordinate responses to modulation of serotonin levels may be missed. Here we report the analysis of behavioural and neuroendocrine defects caused by a complete lack of serotonin signalling. Analysis of the C. elegans genome sequence showed that there is a single tryptophan hydroxylase gene (tph-1)-the key enzyme for serotonin biosynthesis. Animals bearing a tph-1 deletion mutation do not synthesize serotonin but are fully viable. The tph-1 mutant shows abnormalities in behaviour and metabolism that are normally coupled with the sensation and ingestion of food: rates of feeding and egg laying are decreased; large amounts of fat are stored; reproductive lifespan is increased; and some animals arrest at the metabolically inactive dauer stage. This metabolic dysregulation is, in part, due to downregulation of transforming growth factor-beta and insulin-like neuroendocrine signals. The action of the C. elegans serotonergic system in metabolic control is similar to mammalian serotonergic input to metabolism and obesity.  相似文献   

16.
Urotensin-II (U-II) is a vasoactive 'somatostatin-like' cyclic peptide which was originally isolated from fish spinal cords, and which has recently been cloned from man. Here we describe the identification of an orphan human G-protein-coupled receptor homologous to rat GPR14 and expressed predominantly in cardiovascular tissue, which functions as a U-II receptor. Goby and human U-II bind to recombinant human GPR14 with high affinity, and the binding is functionally coupled to calcium mobilization. Human U-II is found within both vascular and cardiac tissue (including coronary atheroma) and effectively constricts isolated arteries from non-human primates. The potency of vasoconstriction of U-II is an order of magnitude greater than that of endothelin-1, making human U-II the most potent mammalian vasoconstrictor identified so far. In vivo, human U-II markedly increases total peripheral resistance in anaesthetized non-human primates, a response associated with profound cardiac contractile dysfunction. Furthermore, as U-II immunoreactivity is also found within central nervous system and endocrine tissues, it may have additional activities.  相似文献   

17.
Endothelial and perivascular cells maintain haematopoietic stem cells   总被引:4,自引:0,他引:4  
Ding L  Saunders TL  Enikolopov G  Morrison SJ 《Nature》2012,481(7382):457-462
Several cell types have been proposed to create niches for haematopoietic stem cells (HSCs). However, the expression patterns of HSC maintenance factors have not been systematically studied and no such factor has been conditionally deleted from any candidate niche cell. Thus, the cellular sources of these factors are undetermined. Stem cell factor (SCF; also known as KITL) is a key niche component that maintains HSCs. Here, using Scf(gfp) knock-in mice, we found that Scf was primarily expressed by perivascular cells throughout the bone marrow. HSC frequency and function were not affected when Scf was conditionally deleted from haematopoietic cells, osteoblasts, nestin-cre- or nestin-creER-expressing cells. However, HSCs were depleted from bone marrow when Scf was deleted from endothelial cells or leptin receptor (Lepr)-expressing perivascular stromal cells. Most HSCs were lost when Scf was deleted from both endothelial and Lepr-expressing perivascular cells. Thus, HSCs reside in a perivascular niche in which multiple cell types express factors that promote HSC maintenance.  相似文献   

18.
M Marin-Grez  J T Fleming  M Steinhausen 《Nature》1986,324(6096):473-476
Atrial natriuretic peptide (ANP) can be extracted from rat hearts, and is found to increase fluid excretion by the kidneys when injected into test animals. The mechanism of ANP action is still unclear. ANP may reduce sodium reabsorption in the renal tubules, but it is also known that it increases the rate of glomerular filtration in the kidney, and relaxes preparations of smooth muscle, including one made from arteries that supply the kidney. To clarify its mode of action, we have studied directly the effects of semi-purified and synthetic ANP on blood vessels in the kidney of anaesthetized rats. We found that ANP causes a vasodilatation of the blood vessels which supply the glomeruli and a vasoconstriction of the arterioles which drain them. This substantiates the finding that increased filtration pressure participates in the natriuretic response.  相似文献   

19.
Atherosclerosis in animals and humans is associated with an unresponsiveness of arteries and arterioles to endothelium-dependent vasodilators--agents acting on smooth muscle indirectly by stimulating the release from endothelial cells of a vasodilator principle (endothelium-derived relaxing factor). Altered vasomotor regulation in atherosclerosis could partly reflect an injurious action of abnormal lipoproteins on endothelium. Recently, 'cell-modified' or 'oxidized' low-density lipoprotein (EC-LDL) has received increasing attention because of its potential cytotoxic and atherogenic properties. We report here that arteries exposed to EC-LDL in vitro show an endothelium-dependent vasoregulatory impairment closely resembling that of atherosclerotic arteries. Our results indicate that transfer of lysolecithin from EC-LDL to endothelial membranes produces a selective unresponsiveness to receptor-regulated endothelium-dependent vasodilators.  相似文献   

20.
李帅  伍丽娜  官璇  胡晓松 《科技咨询导报》2013,(16):234-235,237
随着对神经系统疾病机制研究的不断深入,人们认识到,它在生理和病理下均发挥极其重要的作用.脑水肿及后继的颅内压升高和脑疝形成是脑缺血主要的并发症.星形胶质细胞可通过多种途径影响脑水肿的发生.发展以及消退.明确星形胶质细胞在缺血性脑水肿中的作用及其机制,可能将为脑缺血的治疗提供新的靶点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号