首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 618 毫秒
1.
Liu P  Wang Y  Vikis H  Maciag A  Wang D  Lu Y  Liu Y  You M 《Nature genetics》2006,38(8):888-895
We performed a whole-genome association analysis of lung tumor susceptibility using dense SNP maps ( approximately 1 SNP per 20 kb) in inbred mice. We reproduced the pulmonary adenoma susceptibility 1 (Pas1) locus identified in previous linkage studies and further narrowed this quantitative trait locus (QTL) to a region of less than 0.5 Mb in which at least two genes, Kras2 (Kirsten rat sarcoma oncogene 2) and Casc1 (cancer susceptibility candidate 1; also known as Las1), are strong candidates. Casc1 knockout mouse tumor bioassays showed that Casc1-deficient mice were susceptible to chemical induction of lung tumors. We also found three more genetic loci for lung adenoma development. Analysis of one of these candidate loci identified a previously uncharacterized gene Lasc1, bearing a nonsynonymous substitution (D102E). We found that the Lasc1 Glu102 allele preferentially promotes lung tumor cell growth. Our findings demonstrate the prospects for using dense SNP maps in laboratory mice to refine previous QTL regions and identify genetic determinants of complex traits.  相似文献   

2.
F cells measure the presence of fetal hemoglobin, a heritable quantitative trait in adults that accounts for substantial phenotypic diversity of sickle cell disease and beta thalassemia. We applied a genome-wide association mapping strategy to individuals with contrasting extreme trait values and mapped a new F cell quantitative trait locus to BCL11A, which encodes a zinc-finger protein, on chromosome 2p15. The 2p15 BCL11A quantitative trait locus accounts for 15.1% of the trait variance.  相似文献   

3.
Ath1 is a quantitative trait locus on mouse chromosome 1 that renders C57BL/6 mice susceptible and C3H/He mice resistant to diet-induced atherosclerosis. The quantitative trait locus region encompasses 11 known genes, including Tnfsf4 (also called Ox40l or Cd134l), which encodes OX40 ligand. Here we report that mice with targeted mutations of Tnfsf4 had significantly (P 相似文献   

4.
Identifying the genetic variation underlying quantitative trait loci remains problematic. Consequently, our molecular understanding of genetically complex, quantitative traits is limited. To address this issue directly, we mapped three quantitative trait loci that control yeast sporulation efficiency to single-nucleotide resolution in a noncoding regulatory region (RME1) and to two missense mutations (TAO3 and MKT1). For each quantitative trait locus, the responsible polymorphism is rare among a diverse set of 13 yeast strains, suggestive of genetic heterogeneity in the control of yeast sporulation. Additionally, under optimal conditions, we reconstituted approximately 92% of the sporulation efficiency difference between the two genetically distinct parents by engineering three nucleotide changes in the appropriate yeast genome. Our results provide the highest resolution to date of the molecular basis of a quantitative trait, showing that the interaction of a few genetic variants can have a profound phenotypic effect.  相似文献   

5.
We have used a novel quantitative trait locus model to study the genetics of survival of F2 progeny of susceptible BALB/cByJ and resistant C57BL/6ByJ mice that have been infected with Listeria monocytogenes. This allowed us to map modifiers of L. monocytogenes susceptibility to chromosomes 5 and 13.  相似文献   

6.
Difficulties in fine-mapping quantitative trait loci (QTLs) are a major impediment to progress in the molecular dissection of complex traits in mice. Here we show that genome-wide high-resolution mapping of multiple phenotypes can be achieved using a stock of genetically heterogeneous mice. We developed a conservative and robust bootstrap analysis to map 843 QTLs with an average 95% confidence interval of 2.8 Mb. The QTLs contribute to variation in 97 traits, including models of human disease (asthma, type 2 diabetes mellitus, obesity and anxiety) as well as immunological, biochemical and hematological phenotypes. The genetic architecture of almost all phenotypes was complex, with many loci each contributing a small proportion to the total variance. Our data set, freely available at http://gscan.well.ox.ac.uk, provides an entry point to the functional characterization of genes involved in many complex traits.  相似文献   

7.
8.
A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2.   总被引:15,自引:0,他引:15  
Variation of flowering time is found in the natural populations of many plant species. The underlying genetic variation, mostly of a quantitative nature, is presumed to reflect adaptations to different environments contributing to reproductive success. Analysis of natural variation for flowering time in Arabidopsis thaliana has identified several quantitative trait loci (QTL), which have yet to be characterized at the molecular level. A major environmental factor that determines flowering time is photoperiod or day length, the length of the light period, which changes across the year differently with geographical latitude. We identified the EDI locus as a QTL partly accounting for the difference in flowering response to the photoperiod between two Arabidopsis accessions: the laboratory strain Landsberg erecta (Ler), originating in Northern Europe, and Cvi, collected in the tropical Cape Verde Islands. Positional cloning of the EDI QTL showed it to be a novel allele of CRY2, encoding the blue-light photoreceptor cryptochrome-2 that has previously been shown to promote flowering in long-day (LD) photoperiods. We show that the unique EDI flowering phenotype results from a single amino-acid substitution that reduces the light-induced downregulation of CRY2 in plants grown under short photoperiods, leading to early flowering.  相似文献   

9.
10.
Fibrogenesis or scarring of the liver is a common consequence of all chronic liver diseases. Here we refine a quantitative trait locus that confers susceptibility to hepatic fibrosis by in silico mapping and show, using congenic mice and transgenesis with recombined artificial chromosomes, that the gene Hc (encoding complement factor C5) underlies this locus. Small molecule inhibitors of the C5a receptor had antifibrotic effects in vivo, and common haplotype-tagging polymorphisms of the human gene C5 were associated with advanced fibrosis in chronic hepatitis C virus infection. Thus, the mouse quantitative trait gene led to the identification of an unknown gene underlying human susceptibility to liver fibrosis, supporting the idea that C5 has a causal role in fibrogenesis across species.  相似文献   

11.
12.
We previously mapped the type 2 diabetes mellitus-2 locus (T2dm2), which affects fasting insulin levels, to distal chromosome 19 in a leptin-deficient obese F2 intercross derived from C57BL/6 (B6) and BTBR T+ tf/J (BTBR) mice. Introgression of a 7-Mb segment of the B6 chromosome 19 into the BTBR background (strain 1339A) replicated the reduced insulin linked to T2dm2. The 1339A mice have markedly impaired insulin secretion in vivo and disrupted islet morphology. We used subcongenic strains derived from 1339A to localize the T2dm2 quantitative trait locus (QTL) to a 242-kb segment comprising the promoter, first exon and most of the first intron of the Sorcs1 gene. This was the only gene in the 1339A strain for which we detected amino acid substitutions and expression level differences between mice carrying B6 and BTBR alleles of this insert, thereby identifying variation within the Sorcs1 gene as underlying the phenotype associated with the T2dm2 locus. SorCS1 binds platelet-derived growth factor, a growth factor crucial for pericyte recruitment to the microvasculature, and may thus have a role in expanding or maintaining the islet vasculature. Our identification of the Sorcs1 gene provides insight into the pathway underlying the pathophysiology of obesity-induced type 2 diabetes mellitus.  相似文献   

13.
Control of grain size, shape and quality by OsSPL16 in rice   总被引:15,自引:0,他引:15  
Wang S  Wu K  Yuan Q  Liu X  Liu Z  Lin X  Zeng R  Zhu H  Dong G  Qian Q  Zhang G  Fu X 《Nature genetics》2012,44(8):950-954
Grain size and shape are important components of grain yield and quality and have been under selection since cereals were first domesticated. Here, we show that a quantitative trait locus GW8 is synonymous with OsSPL16, which encodes a protein that is a positive regulator of cell proliferation. Higher expression of this gene promotes cell division and grain filling, with positive consequences for grain width and yield in rice. Conversely, a loss-of-function mutation in Basmati rice is associated with the formation of a more slender grain and better quality of appearance. The correlation between grain size and allelic variation at the GW8 locus suggests that mutations within the promoter region were likely selected in rice breeding programs. We also show that a marker-assisted strategy targeted at elite alleles of GS3 and OsSPL16 underlying grain size and shape can be effectively used to simultaneously improve grain quality and yield.  相似文献   

14.
High-resolution mapping of quantitative trait loci in outbred mice   总被引:21,自引:0,他引:21  
Screening the whole genome of a cross between two inbred animal strains has proved to be a powerful method for detecting genetic loci underlying quantitative behavioural traits, but the level of resolution offered by quantitative trait loci (QTL) mapping is still too coarse to permit molecular cloning of the genetic determinants. To achieve high-resolution mapping, we used an outbred stock of mice for which the entire genealogy is known. The heterogeneous stock (HS) was established 30 years ago from an eight-way cross of C57BL/6, BALB/c, RIII, AKR, DBA/2, I, A/J and C3H inbred mouse strains. At the time of the experiment reported here, the HS mice were at generation 58, theoretically offering at least a 30-fold increase in resolution for QTL mapping compared with a backcross or an F2 intercross. Using the HS mice we have mapped a QTL influencing a psychological trait in mice to a 0.8-cM interval on chromosome 1. This method allows simultaneous fine mapping of multiple QTLs, as shown by our report of a second QTL on chromosome 12. The high resolution possible with this approach makes QTLs accessible to positional cloning.  相似文献   

15.
16.
Treatment with N-ethyl-N-nitrosourea (ENU) efficiently generates single-nucleotide mutations in mice. Along with the renewed interest in this approach, much attention has been given recently to large screens with broad aims; however, more finely focused studies have proven very productive as well. Here we show how mutagenesis together with genetic mapping can facilitate the rapid characterization of recessive loci required for normal embryonic development. We screened third-generation progeny of mutagenized mice at embryonic day (E) 18.5 for abnormalities of organogenesis. We ascertained 15 monogenic mutations in the 54 families that were comprehensively analyzed. We carried out the experiment as an outcross, which facilitated the genetic mapping of the mutations by haplotype analysis. We mapped seven of the mutations and identified the affected locus in two lines. Using a hierarchical approach, it is possible to maximize the efficiency of this analysis so that it can be carried out easily with modest infrastructure and resources.  相似文献   

17.
We report mapping of a quantitative trait locus (QTL) with a major effect on bovine stature to a ~780-kb interval using a Hidden Markov Model-based approach that simultaneously exploits linkage and linkage disequilibrium. We re-sequenced the interval in six sires with known QTL genotype and identified 13 clustered candidate quantitative trait nucleotides (QTNs) out of >9,572 discovered variants. We eliminated five candidate QTNs by studying the phenotypic effect of a recombinant haplotype identified in a breed diversity panel. We show that the QTL influences fetal expression of seven of the nine genes mapping to the ~780-kb interval. We further show that two of the eight candidate QTNs, mapping to the PLAG1-CHCHD7 intergenic region, influence bidirectional promoter strength and affect binding of nuclear factors. By performing expression QTL analyses, we identified a splice site variant in CHCHD7 and exploited this naturally occurring null allele to exclude CHCHD7 as single causative gene.  相似文献   

18.
19.
20.
Texel sheep are renowned for their exceptional meatiness. To identify the genes underlying this economically important feature, we performed a whole-genome scan in a Romanov x Texel F2 population. We mapped a quantitative trait locus with a major effect on muscle mass to chromosome 2 and subsequently fine-mapped it to a chromosome interval encompassing the myostatin (GDF8) gene. We herein demonstrate that the GDF8 allele of Texel sheep is characterized by a G to A transition in the 3' UTR that creates a target site for mir1 and mir206, microRNAs (miRNAs) that are highly expressed in skeletal muscle. This causes translational inhibition of the myostatin gene and hence contributes to the muscular hypertrophy of Texel sheep. Analysis of SNP databases for humans and mice demonstrates that mutations creating or destroying putative miRNA target sites are abundant and might be important effectors of phenotypic variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号