首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
从施工中可能存在的风险出发,通过风险识别、风险评估、风险应对和风险监控4个方面建立浅埋暗挖隧道穿越既有桥梁施工风险控制体系,并将其应用于北京西三环暗挖穿越既有花园桥的施工过程.结果表明,穿越施工风险控制达到了预期的控制目标,实现了既有桥梁在隧道施工过程中的安全运营.  相似文献   

2.
为了解决地铁暗挖隧道密贴下穿大断面污水箱涵变形控制的工程难题,通过Midas GTS NX模拟分析了不同污水流量下暗挖隧道施工引起的既有箱涵的结构变形规律,通过现场监测对施工效果进行评价,主要取得以下认识:污水荷载的变化对箱涵的沉降值影响较大,箱涵内充满污水时的最大沉降值是箱涵内没有污水的1.75倍;当污水高度控制在箱涵管径的0.754m高度以下时,可以保证箱涵结构的安全性;在距离箱涵的间距约13m范围内进行降水以及开挖施工对箱涵扰动较大,沉降最大值为16.86mm,该阶段箱涵的最大沉降值占总沉降值的74%;采用叠加法修正Peck公式能够描述下穿段箱涵结构沉降曲线,暗挖隧道施工时箱涵的沉降槽宽度取值范围为6.32~6.9m,沉降曲线最终呈“U”形。  相似文献   

3.
以某地铁1号线卫星广场站大断面暗挖平顶直墙结构密贴下穿既有线为工程背景,介绍了6导洞的洞桩+洞柱法结合的施工方案.分析总结了下穿过程中的沉降控制关键技术:超前预注浆、注浆抬升、顶升动态沉降控制、初支和二衬背后注浆.监测结果表明:既有线底板最大沉降为8.9mm,变形缝处差异沉降最大值4.5 mm,轨道沉降值最大值为2.8 mm,成功实现了安全下穿既有线.  相似文献   

4.
为确保地铁车站施工期间周边建筑物的安全性和正常使用要求,提出基于风险分析的施工安全管理流程,从既有建筑物安全风险评估、风险控制措施及地层加固措施等几方面探讨了地面沉降、既有建筑物等关键施工节点出现风险事故的机制及其防范措施.工程实践表明,中街站主体结构施工结束后地表沉降及邻近地面建筑物的沉降值均在合理范围以内,验证了施工安全管理流程中规定的风险控制标准以及施工措施的合理性,有效降低了施工期间邻近建筑物面临的倾斜、沉降过大等风险.  相似文献   

5.
为保证北京某新建地铁风道工程近接施工安全,借助FLAC3D软件对该风道CRD工法的施工过程进行动态数值模拟。计算模型为地层结构模型,土体材料模型采用摩尔-库仑准则。结果表明:既有地铁车站最大沉降量为2.54 mm,发生在该车站东南出入口及风道结构转接的位置,车站与出入口的连接处最大沉降量为0.63 mm。靠近新建地铁风道开挖一侧的既有车站出入口侧墙最大水平位移为0.49 mm,车站与出入口连接处的纵向最大水平位移为0.28 mm。新建地铁风道工程对既有地铁车站整体结构变形影响较小,既有车站最大沉降量及轨道最大差异沉降值均在安全范围内。该研究为地铁工程的设计与施工提供了有益参考。  相似文献   

6.
针对紧邻多栋7层建筑和高架地铁车站的深基坑工程,提出了地铁车站基坑半逆作施工方法并分析了环境变形控制效果.根据地铁车站的特点和周围环境控制要求,通过对比分析确定了结合临时支撑和逆作中板的半逆作施工方法,综合顺作法和逆作法的优点.对紧邻浅基础7层建筑和高架地铁车站沉降监测的结果表明:高架车站和多层建筑的沉降与差异沉降均在控制要求以内,距离基坑仅0.4 m的建筑物最大沉降小于10 mm.在逆作中板制作完成后,各测点的沉降曲线趋于平缓,即半逆作法可有效控制基坑施工后期深部开挖引起的环境变形.该方法在保证施工效率的基础上,将基坑周围变形控制在有效范围内.  相似文献   

7.
为了研究富水黄土地区暗挖地铁下穿既有建筑时地表和建筑的沉降特性及规律,确保其施工安全,基于西安地铁3号线长通(长乐公园站—通化门站)暗挖区间,采用MIDAS/GTS建立三维有限元模型,对浅埋暗挖下穿建筑进行动态模拟,得到有无超前注浆时的建筑沉降曲线、工后沉降分布曲线以及工后地表沉降云图,并结合现场实测数据,对比分析下穿过程中建筑的竖向位移、沉降差值随开挖的变化规律以及施工后地表的变形分布。研究结果表明:2种工况下建筑的沉降均主要受其下方左洞开挖的影响,左线下台阶开挖后沉降速率达到最大值,当建筑下部土体全部挖空后沉降达到最大值,施工完成后建筑的沉降以左线为中心呈对称分布;未注浆时建筑的最大沉降发生在基础底部,为119.5mm,差异沉降值为120.5mm,采用超前注浆时最大沉降和差异沉降分别减小了74.7%和75.6%;地表沉降范围为施工区域的2.5~3.0倍,整体呈斜W形分布,左侧变形稍大;未注浆加固时其沉降槽较深,达到了112.3mm,注浆后其最大值仅为15.1mm;与模拟数据相比,现场监测值略大,产生偏差的原因可能是其实际地质条件更复杂,且沉降受地表各种荷载及施工爆破的影响,依托工程实测累计沉降为16mm,可满足控制要求,现场实测数据与数值计算结果吻合较好,可为黄土地区类似工程设计与施工提供一定参考。  相似文献   

8.
为确保盾构安全顺利地下穿地铁运营U形槽线路,避免下穿过程中引起U形槽结构过量沉降,影响运营安全,以北京新机场线2、3号风井盾构区间大直径土压平衡盾构下穿既有大兴线U形槽为工程背景,研究了砂卵石地层盾构隧道开挖对U形槽变形影响。通过对U形槽结构竖向位移、横向位移、轨道竖向位移、轨距等大量监测数据进行分析,得出盾构隧道开挖过程中既有结构的变形规律。结果表明:下方隧道开挖会造成U形槽和轨道结构产生不均匀隆起、沉降变形,竖向变形在2. 0 mm以内;隧道横向变形表现为不规则波动,变形在±0. 5 mm以内;轨距变化在±1 mm以内。既有U形槽结构竖向位移与盾构掘进参数关系密切;通过严格控制盾构施工参数,采用二次注浆、深孔注浆方式对管片背后进行填充,可大幅减少结构沉降。研究结果可为控制U形槽结构变形,确保既有线运行的安全提供借鉴。  相似文献   

9.
为确保盾构安全顺利地下穿地铁运营U形槽线路,避免下穿过程中引起U形槽结构过量沉降,影响运营安全,以北京新机场线2、3号风井盾构区间大直径土压平衡盾构下穿既有大兴线U形槽为工程背景,研究了砂卵石地层盾构隧道开挖对U形槽变形影响。通过对U形槽结构竖向位移、横向位移、轨道竖向位移、轨距等大量监测数据进行分析,得出盾构隧道开挖过程中既有结构的变形规律。结果表明:下方隧道开挖会造成U形槽和轨道结构产生不均匀隆起、沉降变形,竖向变形在2. 0 mm以内;隧道横向变形表现为不规则波动,变形在±0. 5 mm以内;轨距变化在±1 mm以内。既有U形槽结构竖向位移与盾构掘进参数关系密切;通过严格控制盾构施工参数,采用二次注浆、深孔注浆方式对管片背后进行填充,可大幅减少结构沉降。研究结果可为控制U形槽结构变形,确保既有线运行的安全提供借鉴。  相似文献   

10.
为了考察饱和黄土地层暗挖地铁隧道下穿玻璃幕墙建筑物时建筑物及玻璃幕墙的稳定性特征,利用有限元软件MIDAS GTS NX对西安某地铁隧道暗挖下穿玻璃幕墙建筑物进行数值模拟分析,并对比采取注浆加固与未采取注浆加固工况时有限元分析结果与现场实测数据。结果表明:周围土体的沉降主要集中在隧道附近,在地表形成沉降槽;玻璃幕墙的沉降主要在开挖过程中形成,约占总体沉降的95%;未采取注浆加固时地表及建筑物的最大沉降达到79.74 mm,而采取注浆加固后最大整体沉降为13.75 mm,通过全断面注浆和合理的施工工序可以使沉降有效减少82.76%;选取的测点实测平均沉降为13.57 mm,有限元分析中对应测点的平均沉降为10.94 mm,二者误差为2.63 mm,数值模拟与实际工况基本吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号